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DI tematika Ill-1V gimnazijos klaséje: pasiekimy

ralda (https://emokykla.lt/bendrosios-programos/visos-bendrosios-programos/3?ach-1=6&ach-2=6&ach-3=6&ach-
4=6&ach-5=6&ach-6=6&clases=3677,3658&educations=&st=3&types=5,6&ct=6)

Duomeny tyryba ir informacija (C)

* C2. Tyrinéja duomenis ir atlieka veiksmus su jais.
 Tyrinéja ir apibendrina vieSai prieinamus ar automatizuotai renkamus

duomenis ir iSgauna reikalingg informacija (C2.3).

e C3. Vertina duomenuy ir informacijos patikimumga, privatuma.

* Atpazjsta dirbtinio intelekto, neuroniniy tinkly taikymo sritis, vertina
privalumus ir grésmes (C3.3).



https://emokykla.lt/bendrosios-programos/visos-bendrosios-programos/3?ach-1=6&ach-2=6&ach-3=6&ach-4=6&ach-5=6&ach-6=6&clases=3677,3658&educations=&st=3&types=5,6&ct=6
https://emokykla.lt/bendrosios-programos/visos-bendrosios-programos/3?ach-1=6&ach-2=6&ach-3=6&ach-4=6&ach-5=6&ach-6=6&clases=3677,3658&educations=&st=3&types=5,6&ct=6

DI tematika IV gimnazijos klaséje: mokymo(si)

tU rl nys (https://emokykla.lt/bendrosios-programos/visos-bendrosios-programos/3?ach-1=6&ach-2=6&ach-
3=6&ach-4=6&ach-5=6&ach-6=6&clases=3677,3658&educations=&st=3&types=5,7&ct=6)

* Nagrinéjami dirbtinio intelekto taikymai duomenims klasifikuoti
(pavyzdziui, géliy klasifikavimas naudojant ,Iris“ duomeny rinkinj),
atpazinti (pavyzdziui, teksty analizei, kalbos, veido atpazinimui),
prognozuoti (pavyzdziui, oro temperaturai prognozuoti).

e Aptariamos sprendimy medzio, dirbtinio neuroninio tinklo ir kitos
naujausios dirbtinio intelekto technologijos.

* Prisimenama ir gilinamasi, kaip vyksta dirbtinio neuroninio tinklo
apmokymas. Galima atlikti jvairius eksperimentus, pavyzdziui,
su Orange, Python ar kt., naudojant giliajam mokymuisi
skirtas TensorFlow ir Keras APl s3sajas.


https://emokykla.lt/bendrosios-programos/visos-bendrosios-programos/3?ach-1=6&ach-2=6&ach-3=6&ach-4=6&ach-5=6&ach-6=6&clases=3677,3658&educations=&st=3&types=5,7&ct=6
https://emokykla.lt/bendrosios-programos/visos-bendrosios-programos/3?ach-1=6&ach-2=6&ach-3=6&ach-4=6&ach-5=6&ach-6=6&clases=3677,3658&educations=&st=3&types=5,7&ct=6
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Masininis mokymasis

(https://www.researchgate.net/publication/373838363 A Review of Mach

ine Learning-based Security in Cloud Computing/figures)

* Masininis mokymasis — dirbtinio
intelekto algoritmuy klasé, kuriai
budingas ne tiesioginis
problemos sprendimas, o
mokymasis kaip pritaikyti
daugelio panasiy problemy
sprendimus (Saltinis: A.
Paulauskaite-Tarasevicienég, K.
Sutiené , Intelektikos pagrindai“
Kaunas, 2022).
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Praktikos darby struktlra

* Metodo esmé, algoritmas

* Metodo panaudojimo pavyzdziai Excel

* Metodo panaudojimo pavyzdziai Orange

* Metodo taikymo sritys, privalumai ir trukumai
e Savarankisko darbo uzduotys



Praktikos darbai, parengti remiantis , Learn Data

Mining Through Excel”, Orange dokumentacija

* Tiesiné regresija

* Duomeny parengimas analizei
Asociacijy analizé

Sprendimy medziai

K-vidurkiy klasterizacijos metodas
Hierarchiné klasterizacija
Tiesiné diskriminantiné analizé
Logistiné regresija
K-artimiausiy kaimyny metodas
Naivusis Bajeso klasifikatorius
Dirbtinis neuroninis tinklas
Teksto tyryba



Tiesinė regresija.pptx
Duomenų parengimas analizei.pptx
Asociacijų analizė.pptx
Sprendimų medžiai.pptx
K-vidurkių klasterizacija.pptx
Hierarchinė klasterizacija.pptx
Tiesinė diskriminantinė analizė.pptx
Tiesinė regresija.pptx
K-artimiausių kaimynų metodas.pptx
Naivusis Bajeso klasifikatorius.pptx
Dirbtinis neuroninis tinklas.pptx
Teksto tyryba.pptx

Tiesine regresija



Tiesinés regresijos modelis

* Regresijos modelis — statistinis modelis, leidziantis vieno kintamojo reikSmes prognozuoti pagal
kito kintamojo reikSmes. Regresija — statistiné vieno atsitiktinio dydzio reikSmiy priklausomybeé
nuo kito — neatsitiktinio — dydzio (arba keliy kity dydziy), turinti grieztg funkcinj rysj (t.y.,
aprasoma lygtimi).

Ledy pardavimas, tukst. Eury

y = 6,906x - 130,24

Parduota ledy uz tukst. Eury

30 31 32 33 34 35 36 37
Temperatura



Tiesinés regresijos taikymai

Ekonomika ir finansai:
° Akcijy rinkos prognozés. Tiesiné regresija naudojama siekiant prognozuoti akcijy kainas remiantis jvairiais ekonominiais rodikliais, tokiais kaip infliacija, palikany
normos ar ekonomikos augimas.
° Kainy nustatymas. Modeliai gali padéti prognozuoti prekiy ar paslaugy kainas, atsizvelgiant j gamybos sgnaudas, paklausg ir pasiula.
Sveikatos apsauga:
° Ligy prognozavimas. Naudojama analizuoti sveikatos rodiklius, kaip kraujosptdj, cukraus kiekj kraujyje, ir numatyti ligy rizikg, pavyzdziui, Sirdies ligas ar diabeta.
° Medikamenty efektyvumas. Gali biti naudojama vertinant, kokig jtakg tam tikri veiksniai (pvz., dozé, paciento amzius) turi gydymo rezultatams.
Rinkodara ir pardavimai:
o Reklamos efektyvumas. Naudojama analizuoti reklamos iSlaidy poveikj pardavimams ir optimizuoti marketingo kampanijas.
° Klienty elgsenos analizé. Gali biti taikoma siekiant suprasti, kokig jtaka skirtingi veiksniai (pvz., pajamos, amzius) turi klienty pasirinkimames.
Socialiniai mokslai:
o Demografiniai tyrimai. Tiesiné regresija naudojama siekiant nustatyti, kaip jvairis demografiniai veiksniai (pvz., amzZius, pajamos, iSsilavinimas) daro jtaka tokiems
rodikliams kaip nedarbo lygis ar Seimos dydis.
° Psichologiniai tyrimai. Naudojama analizuoti sgsajas tarp psichologiniy kintamuyjy, pvz., kaip stresas veikia darbo nasuma.
InZinerija ir gamyba:
° Kokybés kontrolé. Gali biti naudojama prognozuoti gaminiy kokybe ar defektus atsizvelgiant j gamybos parametrus.
° Istekliy optimizavimas. InZinieriai naudoja regresijos modelius optimizuojant gamybos procesus ir sumazinant sgnaudas.
Aplinkosauga ir klimato kaita:
° Klimato pokyciai. Tiesiné regresija naudojama modeliuojant klimato duomenis, pvz., analizuojant temperattros pokyciy jtaka ledyny tirpimui ar juros lygio kilimui.
o Tersaly analizé. Gali buti naudojama analizuoti, kokia tam tikry veiksniy jtaka (pvz., gamykly skaicius, transporto priemoniy kiekis) oro tarsai.
Sportas:
° Sporto rezultaty prognozavimas. Tiesiné regresija gali bati naudojama numatyti komandos ar individualaus Zaidéjo pasirodymus, remiantis tokiais duomenimis kaip
ankstesni rezultatai, suzaidziamy rungtyniy skaicius, komandos sudétis.
° Zaidéjy vertinimas. Naudojama siekiant nustatyti, kaip tam tikri veiksniai, pvz., treniruo¢iy intensyvumas ar zaidéjo amzius, gali paveikti zaidéjy meistriskuma.
Nekilnojamojo turto vertinimas:
° Nekilnojamojo turto kainos. Tiesiné regresija daznai naudojama siekiant nustatyti, kaip veiksniai, pvz., vieta, busto dydis, mety skaiius nuo statybos, veikia
nekilnojamojo turto kainas.
Transportas ir logistika:
° Kuro suvartojimo prognozavimas. Analizuoja, kaip jvairas veiksniai, pvz., kelio biklé, transporto priemonés amzius, paveikia degaly suvartojima.
° Eismo prognozés. Naudojama numatant eismo intensyvumg ir optimizuojant transporto sistemas.



Daugialypé tiesiné regresija
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Tiesinés regresijos realizavimas Orange
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Daugialypés tiesines regresijos realizavimas
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Paklaidy priezastys atliekant tiesine regresija

Kartais regresijos modelis neapima visy reikSmingy kintamuyjy, kurie gali turéti jtakos priklausomam kintamajam. Pvz., jei
prognozuojame busto kaing, bet nejtraukiame kintamuyjy, tokiy kaip kriminogeniné padétis ar mokykly kokybé, modelio
tikslumas gali sumazéti, o prognozavimo paklaidos padidéti. Jei reikSmingi veiksniai nejtraukti, modelis negali tiksliai
prognozuoti rezultatuy.

Jei realus duomeny rysys néra tiesinis, bet pasirenkamas tiesinis modelis, prognozés bus netikslios. Tokiais atvejais
reikalingi sudétingesni modeliai (pvz., polinominé regresija), kurie geriau atspindéty realy duomeny rys;.

Kai kurie kintamieji gali bati neteisingai iSmatuoti ar uzfiksuoti. Pvz., klaidos gali kilti dél prietaisy netikslumy, subjektyviy
vertinimy ar duomeny jvedimo klaidy. Sios klaidos tiesiogiai padidina paklaidas ir sumazina modelio tiksluma.

Paklaidos gali atsirasti dél veiksniy, kurie negali buti tiksliai numatyti arba iSmatuoti, taCiau daro jtakg priklausomam
kintamajam. Pvz., ekonominiai sukrétimai, gamtos nelaimés ar netikéti visuomeniniai pokyciai gali sukelti nenumatytas
pokyciy tendencijas, kurios neatitinka modelio.

Duomenys naturaliai kinta, todél neiSvengiama, kad atsiranda tam tikra atsitiktiné paklaida, net jei modelis gerai atspindi
pagrindine tendencija.

Tiesinés regresijos modelis daro prielaidg, kad paklaidy dispersija yra pastovi visoms nepriklausomy kintamuyjy reikSméms.
Jei paklaidos didéja arba mazéja priklausomai nuo kintamyjy reikSmiy, modelio tikslumas gali sumazéti.

Jei nepriklausomi kintamieji yra stipriai susije tarpusavyje, regresijos koeficientai tampa nepatikimi. Tai gali sukelti didesnes
paklaidas prognozuojant rezultatus ir sunkinti modelio interpretacija.

Jei duomeny rinkinyje yra ekstremaliy arba iSskirtiniy tasky (anomalijy), jie gali neproporcingai paveikti tiesing regresija,
todél bendros tendencijos tampa klaidingos. Siuos taskus butina identifikuoti ir jvertinti, ar tai klaidingi duomenys, ar
anomalija.



Savarankisko darbo uzduotys

G e 1-7 uzduotys — tiesiné regresija

Gediminas Murauskas

e 8-10 uzduotys — daugialypé tiesiné regresija
N ] -~ D,
STATISTIKA 1}  Savarankisko darbo uzduodiy rinkinys



Tiesine_uzduotys.docx

Duomeny parengimas
analizei



Duomeny parengimas (1)

e Jrasy skaicCius

e Atributy skaicius

e Kiekvieno atributo duomeny tipas

e Kiekvieno skaitinio pozymio suma, vidurkis, mediana ir dispersija
e Kiekvieno skaitinio pozymio verciy diapazonas

e Kategorinio tikslo kintamojo ir atributy unikalios reikSmés

e Tikslo kintamojo verciy pasiskirstymas klaséje

e Trukstami duomenys

e Duomeny anomalijos ir kt.



Duomeny parengimas (2)

* Duomeny valymas
* panaudojant skaiciuoklés funkcijas,
* uzdedant filtrus.

 Atributy pasirinkimas
* atributy pasirinkimo principai:

* atributai, kuriy reikSmés yra toje pacioje skaléje, veikia geriau,
* atributai su didesne dispersija turi didesne jtaka,

* susije atributai pateikia tg pacig informacijg apie duomenis.
 duomeny transformavimas j vieng skale (normalizavimas ir standartizavimas),

* koreliacijos matrica.



Savarankisko darbo uzduotys

* Jrasy, atributy skaiciaus, atributy duomeny tipy, skaitiniy atributy
pagrindiniy statistiniy charakteristiky skaiciavimas, kategoriniy
duomeny unikaliy verciy nustatymas, tikslo kintamojo verciy
pasiskirstymas.

* Netinkamy duomenuy pasalinimas.
* Kategoriniy verciy kodavimas.

e Koreliacijos matricos formavimas ir atributy pasirinkimas pirminiam
analizés etapui.

e Savarankisko darbo uzduociy failas.



Duomenu_parengimas_analizei_uzduotys.docx

K-vidurkiy klasterizacija



Metodo esmeé

 Klasterizacija yra klasifikavimo metodas, kurj taikant duomenys vyra
suskirstomi j skirtingas grupes (klasterius), kuriy kiekvienas turi daugybe
budingy savybiu.

e Klasterizacija yra nepriziurimasis duomeny tyrybos metodas.
Klasterizuojant nereikia mokymo duomeny rinkinio. Du populiariausi
klasterizacijos metody tipai yra skaidymo ir hierarchiné klasterizacija. K-
vidurkiy klasterizacija, kur k reiskia norima klasteriy skaiciy, yra skaidymo
klasterizacijos tipas. Kiekvienas klasteris apibréziamas klasterio duomenuy
tasky centru (arba vidurkiu).

* K-vidurkiy klasterizacijos metodas reikalauja, kad visi duomenys buty
skaitiniai.




Algo rltl I IaS (https://www.researchgate.net/figure/Flowchart-of-k-means-clustering-algorithm fig2 271915066)
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https://www.researchgate.net/figure/Flowchart-of-k-means-clustering-algorithm_fig2_271915066

Pagrindinés taikymo sritys

Rinkodara ir klienty segmentavimas. Naudojamas segmentuoti klientus pagal jy elgesj, pirkimo
jprocCius ar kitus rodiklius, siekiant sukurti tikslines rinkodaros kampanijas.

Vaizdy apdorojimas. Naudojamas spalvy kvantavimui arba segmentavimui, kad buty galima
suskirstyti vaizdus j skirtingas spalvy zonas ar objektus.

Biologija ir medicina. Naudojamas genetiniy duomeny, biologiniy stebéjimy grupavimui ir
medicininiy vaizdy segmentavimui (pvz., aptinkant anomalijas arba skirtingus audinius).

Finansy analizé. Naudojamas nustatyti investicijy grupes, finansines anomalijas arba segmentuoti
akcijy rinkos tendencijas.

Rekomendacijy sistemos. Naudojamas vartotojy elgsenos segmentavimui, siekiant personalizuoti
rekomendacijas (pvz., filmuose, muzikos platformose).

Tiekimo grandiniy valdymas. Naudojamas optimizuoti sandéliy iSdéstymg, klienty aptarnavimo
zony formavimag arba tiekimo tinkly planavima.

Socialiniy tinkly analizé. Naudojamas analizuoti vartotojy grupes pagal jy sgveika socialiniuose
tinkluose arba aptikti bendruomenes.

Geografiné analizé ir zemélapiy kurimas. Naudojamas suskirstyti geografines zonas pagal tam
tikrus rodiklius, pvz., gyventojy tankj ar vietoviy charakteristikas.
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Mokomasis pavyzdys (2)
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K-vidurkiy klasterizacijos realizavimas Orange
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Rezultaty vizualizacija Silhouette Plot

 Silhouette Plot leidzia vizualiai jvertinti
klasterio kokybe. Sioje vizualizacijoje
rodomas vidutinis atstumas tarp
egzemplioriy klasteryje ir
egzemplioriy artimiausiame
klasteryje. Tam tikro duomeny
egzemplioriaus siluetas, artimas 1,
rodo, kad duomeny egzempliorius yra
arti klasterio centro. Atvejai, kuriy
silueto balai artimi O, yra dviejy grupiy
riboje.
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Rezultaty vizualizacija Scatter Plot
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Savarankisko darbo uzduotys

1. Genomas gali buti naudojamas véziu sergancCiy pacienty prognozei. Paprastai
genominis parasas turi daugiau nei 20 geny ar net Simtus geny. Remiantis geny
ekspresijos lygiais, galima apytiksliai numatyti pacienty iSsgyvenamumg, todél galima
daryti prielaidg, kad galima suskirstyti pacientus j skirtingas grupes (skirtingy
iSgyvenamumo mety ir tikimybiy). Tarkime, kad minéti 7 genai gali buti naudojami
gaubtinés zarnos veéziu sergantiems pacientams sugrupuoti. Atlikite k-vidurkiy
klasterizacijg. Pradiniai duomenys pateikti faile 3Skyrius-1SD.xIsx.

2. Faile 3Skyrius-2SD.xlsx pateikti duomenys apie tuberkuliozés atvejus Lietuvoje
(duomenys adaptuoti iS https://data.gov.lt/datasets/1894/).



https://data.gov.lt/datasets/1894/

Hierarchine klasterizacija



Metodo esmeé

* Nepriziurimas klasifikavimo metodas, suskirstantis subjektus (duomeny
taskus) j skirtingas grupes (klasterius), remiantis tam tikry savybiy
panasumu.

e Hierarchiné klasterizacija sukuria klasteriy medj. Galutinis hierarchinés
klasterizacijos produktas paprastai pateikiamas dendrograma, kuri
atvaizduoja santykinius atstumus nuo pradiniy duomeny tasky arba
sugrupuoty duomeny tasky.

* Hierarchinis grupavimas prasideda nuo artumo matricos ir niekada
nereikia is anksto nustatyti grupiy skaiciaus.



Hierarchinés klasterizacijos algoritmas (1)

Hierarchinés klasterizacijos algoritma galima paaiskinti pavyzdziu, kuriame yra seSi duomeny taskai A, B, C, D, E ir
F.

1. Kiekvienas duomeny taskas is pradziy traktuojamas kaip klasteris.

2. Sukuriama artumo matrica, rodanti atstumus tarp sesiy grupiy.

3. Tarkime, kad maziausias atstumas yra tarp A ir C, tada A ir C pirmajame rate dedami j tg patj klasterj ir
vaizduojami kaip AC.

4. Dabar yra tik penkios grupés: AC, B, D, E ir F.

. Pakartokite 2 veiksmg, kad sukurtumeéte penkiy grupiy artumo matrica. Tarkime, kad tarp B ir D yra maziausias
atstumas, tada yra tik keturi klasteriai: AC, BD, E ir F.

6. Pakartokite 2 veiksmga, kad sukurtuméte keturiy grupiy artumo matricg. Tarkime, kad tarp AC ir F yra
maziausias atstumas, tada yra tik trys klasteriai: ACF, BD ir E.

7. Pakartokite 2 veiksmg, kad sukurtumeéte trijy grupiy artumo matricg. Tarkime, kad tarp ACF ir BD yra
maziausias atstumas, tada yra tik du klasteriai: ACFBD ir E.

8. Hierarchinis klasterizavimas baigiamas, kai susiformuoja vienas klasteris: ACFBDE.



Hierarchinés klasterizacijos algoritmas (2)
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Saltinis: https://www.researchgate.net/figure/Flow-chart-of-
agglomerative-hierarchical-clustering figl 313238175



https://www.researchgate.net/figure/Flow-chart-of-agglomerative-hierarchical-clustering_fig1_313238175
https://www.researchgate.net/figure/Flow-chart-of-agglomerative-hierarchical-clustering_fig1_313238175

A

Dendrograma

Dendrogram

1. Vertikalios linijos atspindi klasteriy sujungimo lygj. Kuo
auksciau linija, tuo didesnis atstumas tarp sujungiamy
klasteriy ar duomeny tasky.

2. Horizontali linija nurodo klasteriy susijungimo taska.
Kiekvienas Sis taskas rodo, kurioje vietoje du ar daugiau
klasteriy susijungia, o dendrograma leidzia stebéti Siuos
susijungimus hierarchiskai.

3. Duomeny taskai arba objektai, pradedant nuo apacios,
vaizduoja individualius duomeny taskus arba objektus.
Kylant auksStyn, jie susijungia, formuodami didesnius
klasterius.

4. Pjuvio (angl. cut-off) linijos: Norint nustatyti klasteriy
skaiCiy, dendrogramoje galima brézti horizontalias linijas
tam tikru aukscdiu. Darant dendrogramos pjuvius tam
tikrame aukstyje, galima atskirti, kiek klasteriy bus
suformuota.

Dendrogramos interpretacijoje galima matyti, kaip individualus
taskai (objektai) apacioje susijungia j grupes (klasterius). Sios
grupés toliau jungiasi, kol susiformuoja vienas didelis klasteris
arba keli stambus klasteriai, priklausomai nuo pasirinkto
suskirstymo lygio.



Mokomasis pavyzdys
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Hierarchineés klasterizacijos realizavimas Orange
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Savarankisko darbo uzduotys

1. ISnagrinékite ir praktiskai atlikite hierarchinés klasterizacijos pavyzdzius, pateiktus Orange dokumentacijoje:

* https://orange3.readthedocs.io/projects/orange-visual-
programming/en/latest/widgets/unsupervised/hierarchicalclustering.html

e video jrasuose:

* https://www.youtube.com/watch?v=ZiOv5YAIE4lI,

e https://www.youtube.com/watch?v=UYz5vIxH Ul,

* https://www.youtube.com/watch?v=j iglLi-NHFs.

1. Duomeny rinkinyje, pateiktame faile Mall_Customers.csv (Saltinis:
https://www.kaggle.com/code/devahuja2808/hierarchical-clustering/input) pateikti duomenys apie klientus.
Pasirinktu jrankiu (pvz., Excel, Orange, Python ir kt.) atlikite hierarachine klasterizacijg ir paaisSkinkite gautus
rezultatus.



https://orange3.readthedocs.io/projects/orange-visual-programming/en/latest/widgets/unsupervised/hierarchicalclustering.html
https://orange3.readthedocs.io/projects/orange-visual-programming/en/latest/widgets/unsupervised/hierarchicalclustering.html
https://www.youtube.com/watch?v=ZiOv5YAiE4I
https://www.youtube.com/watch?v=UYz5vIxH_UI
https://www.youtube.com/watch?v=j_iqLi-NHFs
https://www.kaggle.com/code/devahuja2808/hierarchical-clustering/input

Sprendimy medziai



Metodo esmeé

e Sprendimy medis yra taisyklémis pagrjstas metodas.

* Mazgo padalijimas medyje pagrjstas entropijos skaiCiavimu: entropija
parodo, kiek medzio mazgo duomenys yra ,,gryni“. Kuo didesné entropija,
tuo duomenu grvnumas mazesnis.



Mokomasis pavyzdys: sprendimy medzio
taikymas prognozei

A B C D E F G

1 |Temperatara Drégmé Véjas Oras Zaidimas Tikimybé

2 |Zema Didelé Véjuota Apsiniauke Taip 1
3 |Zema Normali Véjuota Sauléta Taip 1
4 |Tinkama Didelé Véjuota Lietinga Ne 1
5 |Tinkama Didelé Véjuota Lietinga Ne 1
6 |Auksta Didele Nevéjuota Sauléta Ne 1
7 |Auksta Normali Véjuota Apsiniauke Taip 1
g |Zema Didele Véjuota Sauléta Ne 1
g |Tinkama Didelé Véjuota Lietinga Ne 1
10 | Tinkama Normali Véjuota Lietinga Ne 1
11 |Zema Didele Véjuota Lietinga Ne 1
12 | Tinkama Didelé Nevéjuota Sauléta Ne 1
13 | Tinkama Normali Nevéjuota Sauléta Taip 1
14 |Auksta Didelé Nevéjuota Apsiniauke Taip 1
15 | Zema Didelé Nevéjuota Apsiniauke Taip 1
16

17 Oras

18

19| Lietinga(3,2) Apsiniauke(0,0) Sauléta(2,3)
20

21 Véjuota(0,2) Nevéjuota(3,0) Didelé drégmé(0,3) Normali drégmé(2,0)



Sprendimy medzio realizacija Orange (1

e Sprendimy medzio modelis
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Sprendimy medzio realizacija Orange (2)

* Valdiklio Tree nustatymai
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Sprendimy medziy privalumai ir trukumai

Privalumai

* |Intuityvus ir lengvai
interpretuojami.

* Tinkami apdoroti ir skaitiniams, ir
kategoriniams duomenims.

* Nereikia papildomai apdoroti
duomeny (normalizuoti,
standartizuoti).

* Gebéjimas apdoroti sudétingy
struktury duomenis.

* Tinka svarbiausiy atributy atrankai.

Trukumai
* Priklauso nuo duomeny kokybés.
* Persimokymo rizika.

* Trakstamy duomeny valdymo
sudéetingumas.

e Kintamojo pasirinkimo saliSkumas
(didesnj skaiCiy reikSmiy turintys
kintamieji gali buti dazniau
pasirenkami kaip pagrindiniai
atributai, nes jie turi daugiau
potencialiy padalijimy).



Sprendimy medziy taikymo sritys

Finansai:
o Kredito rizikos vertinimas: Naudojant sprendimy medzius, galima jvertinti klienty kredito rizikg pagal jy finansine istorijg, pajamy lygj
ir kitus rodiklius.
o Sukciavimo aptikimas: Sprendimy medziai gali padeéti aptikti netipines finansines operacijas, kurios gali bati sukéiavimo atvejai,
remiantis operacijy istorija ir kliento elgsenos modeliu.
Medicinos diagnostika:
o Ligos prognozavimas: Sprendimy medziai gali buti naudojami prognozuoti paciento rizikg susirgti tam tikra liga, remiantis
simptomais, amziumi ir kitais rodikliais.
o Vezio tipy klasifikacija: Jie naudojami nustatyti, ar navikas yra piktybinis ar gerybinis, remiantis pacienty duomenimis ir naviko
savybéemis.
Rinkodara ir klienty analizé:
o Klienty segmentavimas: Sprendimy medziai gali segmentuoti klientus pagal elgseng, pirkimo jprocius ar demografinius duomenis.
o Produkty rekomendacijos: Naudojami prognozuoti, kokie produktai galéty buti aktualus klientui pagal jo ankstesnius pirkimus ir
panasiy klienty pasirinkimus.
Aplinkos apsauga ir tyrimai:
o Aplinkos duomeny analizé: Sprendimy medziai naudojami prognozuoti oro kokybés pokycius, vandens tarsos lygj ar net ekologinius
pavojus, remiantis meteorologiniais duomenimis ir kitais veiksniais.
o @yvuny elgsenos analizé: Jie gali buti naudojami analizuoti ir klasifikuoti gyvuny rusis pagal jy savybes arba prognozuoti gyvuny
populiacijy pokycius pagal aplinkos veiksnius.
Zmogiskieji istekliai:
o Darbuotojy atranka: Sprendimy medziai gali padéti prognozuoti, kurie kandidatai turi didziausig s€kmeés potencialg pagal jy patirtj,
iSsilavinimg ir testy rezultatus.
o ISéjimo iS darbo prognozé: Jie gali numatyti darbuotojy iSéjimo iS darbo rizikg pagal jy darbo laikg, naSuma, pasitenkinimg darbu ir
kitus atributus.



Savarankisko darbo uzduotys

Pritaikykite sprendimy medzius klasifikacijos uzdaviniams spresti.
Remdamiesi gautais rezultatais suformuluokite isvadas. Siulomi
duomeny rinkiniai:

1. Nacionaliniy mokiniy pasiekimy patikrinimy (NMPP) 2022-2023 m. m. duomenys
(Saltinis: https://data.gov.lt/datasets/1930/, failas Pasiekimai_P1.xlsx).

2. Duomeny rinkinyje yra pateikiami mobilios interneto prieigos duomeny
perdavimo spartos kontroliniy matavimy rezultatai. Matavimai atliekami
operatoriy UAB ,Bité Lietuva® AB ,Telia Lietuva® ir UAB ,TELE2“ mobiliojo rysio
tinkluose visoje Lietuvos teritorijoje vaziuojant keleivinio gelezinkelio marsrutais
(Saltinis: https://data.gov.lt/datasets/1420/resource/9715, failas
Internetas_P2.xlIsx).



https://data.gov.lt/datasets/1930/
https://data.gov.lt/datasets/1420/resource/9715

Kas pavyko

e Sudominti mokinius ir islaikyti motyvacija.

* |ISsamus pamoky scenarijai palengvino darba.

* Mokiniams suprantamiausi vizualiai atvaizduoti rezultatai.
 Remdamiesi gautais rezultatais mokiniai noriai formulavo jzvalgas.

* Mokiniai lygino skaiCiuokle ir Orange gautus rezultatus, bandé
jvardinti, kodeél rezultatai taikant kai kuriuos metodus skiriasi.

 Keli mokiniai rimtai nusprendé susieti ateitj su duomeny mokslu (data
science).



Kas buvo sunkiausia

 Surasti tinkamas sgvokas lietuviy kalba (ypac teksto tyrybai).
* Parinkti tinkamus duomeny rinkinius analizei.
* Pritruko laiko projektiniams darbams.



Kas toliau?

* Papildyti praktikos darbus masininio mokymosi metody realizacijomis
Python programavimo kalba.

e Papildyti praktikos darbus video pamokomis.
* Papildyti uzduociy baze naujais duomeny rinkiniais.
 Domeétis naujovémis ir jas pritaikyti sukuriant praktikos darbus.



Visa medziaga

* https://drive.google.com/drive/folders/1f7iBc-
HIIOngthrFZvnbub8fxrMTerv-?usp=sharing



https://drive.google.com/drive/folders/1f7iBc-HlI0nqthrFZvnbub8fxrMTerv-?usp=sharing
https://drive.google.com/drive/folders/1f7iBc-HlI0nqthrFZvnbub8fxrMTerv-?usp=sharing
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