

KAUNO TECHNOLOGIJOS UNIVERSITETAS

INFORMATIKOS FAKULTETAS

INFORMACIJOS SISTEMŲ KATEDRA

Kristina Smilgytė

Dirbtinių neuroninių tinklų taikymas parenkant

testavimo metodą

Magistro darbas

 Darbo vadovė

 m.d. dr. Jovita Nenortaitė

Kaunas, 2011

KAUNO TECHNOLOGIJOS UNIVERSITETAS

INFORMATIKOS FAKULTETAS

INFORMACIJOS SISTEMŲ KATEDRA

Kristina Smilgytė

Dirbtinių neuroninių tinklų taikymas parenkant

testavimo metodą

Magistro darbas

Recenzentas Darbo vadovė

 prof. dr. Eduardas Bareiša m.d. dr. Jovita Nenortaitė

2011-05-30 2011-05-23

 Atliko

 IFM-9/4 gr. studentė

 Kristina Smilgytė

 2011-05-23

Kaunas, 2011

Artificial Neural Networks Application in Software Testing

Selection Method

Summary

The importance of software testing is growing as a concurrent part of software

development. In order to improve the financial allocation of the software testing, software

developers have to make a choice between automatic and manual testing methods. The solution

related to the problematic choice of testing methods is presented in this work. The main concept

of the method is to present the recommendation whether the automatic or manual testing method

is better to use or whether their usage is simply adequate. The choice of the testing method is

based on the application of the artificial neural networks. Experimental investigations on

artificial neural networks structure selection and method evaluation showed that presented idea

could be worth as substantiation of the choice selection. The results of the method should be

considered as the recommendation since the accuracy depends on the data which was used for

training. According to this reason this method is more suitable for those companies or customers

which already have historical testing data of the project.

Keywords: artificial neural networks, software testing, project manager, experiments

4

Turinys

1. Įvadas

.. 6

2. Metodo analizė

.. 8

2.1. Analizės tikslas .. 8

2.2. Tyrimo sritis, objektas ir problema .. 9

2.3. Tyrimo objekto analizė .. 9

2.4. Metrikos ...

14

2.5. Vartotojų analizė ..

16

2.5.1. Vartotojų aibė, tipai, savybės ... 16

2.5.2. Vartotojų tikslai ir problemos ... 16

2.6. Esamų sprendimų analizė .. 17

2.6.1. Dirbtinio neuroninio tinklo pristatymas ... 17

2.6.2. Orakulo gavimas remiantis ANN .. 19

2.6.2.1. Apmokymo etapas. ..

19

2.6.2.2. Įvertinimo etapas ...

19

2.6.3. Miglotos informacijos tinklo pristatymas ... 20

2.6.4. Orakulo gavimas remiantis IFN ... 21

2.6.4.1. Tinklo konstravimo etapas .. 21

2.6.4.2. Įvertinimo etapas ...

21

2.6.5. ANN ir IFN palyginimas ... 21

2.6.6. Genetiniai algoritmai .. 22

2.6.7. Spiečiaus intelektas .. 23

2.6.7.1. Skruzdţių kolonijos optimizavimo algoritmas .. 24

2.6.7.2. Dalelių spiečiaus optimizavimo algoritmas .. 25

2.6.8. Genetinio algoritmo ir spiečiaus intelekto palyginimas 27

2.7. Siekiamas sprendimas ..

27

2.8. Analizės išvados .. 29

3. Metodo reikalavimų specifikacija ir analizė ...

30

5

3.1. Taikymo sritis, sąlygos ir prielaidos .. 30

3.2. Funkciniai reikalavimai ... 30

3.3. Nefunkciniai reikalavimai ..

34

3.4. Dalykinės srities modelis ... 36

3.5. Reikalavimų analizės apibendrinimas.. 36

4. Metodo aprašas

.. 37

4.1. Metodo taikymas ..

37

4.2. Metodo realizavimo programinė įranga ... 38

4.3. Metodo naudojamų duomenų modelis ... 38

4.4. Metodo dirbtinio neuroninio tinklo struktūra .. 44

4.5. Pateikto formalaus aprašo pagrindimas ... 44

4.5.1. Neuroninio tinklo apmokymas ... 44

4.5.2. Neuroninio tinklo naudojamos formulės .. 45

4.5.3. Neuroninio tinklo architektūra testavimo tipo parinkimo metodui 46

5. Sprendimo realizacija ..

46

6. Eksperimentinis tyrimas ..

49

6.1. Neuroninio tinklo parametrų analizė ... 49

6.2. Neuroninio tinklo parametrų analizės išvados ... 53

6.3. Pradinių duomenų imties įtaka neuroninio tinklo apmokymui 53

6.4. Sprendimo taikymo rekomendacijos ir galimybės ... 54

7. Išvados

... 55

8. Literatūra ...

57

9. Santrumpų ir terminų ţodynas ..

60 10. Priedai..

61

1 priedas. Straipsnis leidinyje „Informacinė visuomenė ir universitetinės studijos IVUS

2010― ..

61

2 priedas. Paţyma dėl priimto publikuoti mokslinio straipsnio (IVUS 2010) 68

3 priedas. Straipsnis leidinyje „Proceedings of the 6th International Conference on Hybrid

6

Artificial Intelligence Systems HAIS 2011― ..

70

4 priedas. ANN apmokymas ir sprendimo prognozės ...

79

1. Įvadas

Programinės įrangos kūrimas daţniausiai remiasi proporcingu laiko ir kokybės

suderinimu. Daugumai kompanijų projektų uţbaigimas laiku ir neviršijant skirto biudţeto

reikalauja daug pastangų, norint tai pasiekti daţnai stokojama dėmesio kokybei. Išleidus

produktą, dėl kūrimui skirto laiko trūkumo vartotojai daţnai susiduria su įvairiomis

funkcionalumo neišpildymo ar nekorektiško įgyvendinimo problemomis. Vienas iš kokybės

gerinimo būdų – tinkamas sistemos testavimas. Vykdant didelius projektus didelę reikšmę turi

tikslūs ir motyvuoti sprendimai. Renkantis testavimo metodą nemaţai diskusijų susilaukia

rankinio ir automatinio testavimo parinkimas. Vis dėlto, vieningo atsakymo į klausimus: kada,

kodėl, kaip ir kuris metodas turi būti naudojamas nėra.

Siūlomas metodas skirtas palengvinti ir pagrįsti testavimo metodo parinkimą. Metodas

padės nuspręsti, ar reikalingi automatiniai testai. Tokiu būdu bus galima ne tik įvertinti

testavimo tipo privalumus ir trūkumus, bet ir kuriamo metodo gautus rezultatus. Kuriant

metodą, skirtą testavimo būdo parinkimui, siekta išlaikyti tikslumą, kad jo taikymas testavimo

procese galėtų garantuoti testavimo efektyvumą bei kokybę. O metodo įgyvendinimui

pasirenkant dirbtinio intelekto metodą.

Todėl šio darbo tyrimo sritis – programinės įrangos testavimo ir dirbtinio intelekto

metodai, o tyrimo objektas – dirbtiniu intelektu pagrįstas metodas, skirtas testavimo metodo

parinkimui. Siekiant surasti tinkamą sprendimą buvo analizuojama tiek dirbtinio intelekto

metodų savybės, panaudojimo galimybės, tiek ir automatinio, rankinio testavimo metodų

parinkimą lemiantys kriterijai.

Darbo tikslas – pagerinti testavimo metodų parinkimą, pasiūlant intelektualų testavimo

tipo parinkimo metodą, paremtą dirbtinio intelekto metodų taikymu.

Darbo uţdaviniai:

1. Išanalizuoti, testavimo metodus, automatinius testus bei jų parinkimo ir

naudojimo galimybes.

7

2. Išanalizuoti dirbtinio intelekto metodus bei jų taikymo galimybes programinės

įrangos testavime.

3. Remiantis atlikta analize nuspręsti, kuris iš dirbtinio intelekto metodų (dirbtiniai

neuroniniai tinklai, genetiniai algoritmai, spiečiaus intelektas ir pan.) galėtų būti

panaudotas testavimo metodo parinkimo kūrime.

4. Pasiūlyti intelektualų programinės įrangos testavimo metodą, kuris galėtų būti

naudojamas projekto vadovo ar testuotojo, ir kuris padėtų pasiūlyti testavimo

metodo parinkimo įrankį. Intelektualaus programinės įrangos testavimo metodo

taikymas testavimo procese turėtų garantuoti testavimo efektyvumą bei testavimo

tikslumą.

5. Atlikti pasiūlyto testavimo metodo parinkimo įrankio analizę, bei nustatyti

naudotinus parametrus (pvz.: jei bus nutarta naudoti neuroninius tinklus reiks

nustatyti įėjimų skaičių, parinkti neuroninio tinklo struktūrą ir pan.).

6. Įvertinti intelektualaus testavimo metodo taikymo galimybes ir perspektyvas.

7. Sukurti prototipą pasiūlyto metodo veikimo demonstravimui.

Nagrinėjant testavimo specifiką ir testavimo parinkimą lemiančius veiksnius, buvo

remiamasi [1-7], [26] šaltiniais, kuriuose aprašoma testavimo metodai, optimalus testavimo

kiekis, rankinio ir automatinio testavimo savybės, metrikos. Tyrinėjant dirbtinio intelekto

metodus, buvo analizuojami dirbtiniai neuroniniai tinklai [8], [9], [22], [30], miglotos

informacijos tinklas [9], [10], genetiniai algoritmai [8], [11], [12], spiečiaus intelektas [13],

[14], [15], [16], [17], [18], skruzdţių kolonijos optimizavimo algoritmas [18], [19], dalelių

spiečiaus optimizavimo algoritmas [15], [18], [20], [21], [22], [23], genetinio algoritmo ir

spiečiaus intelekto palyginimas [24], [25], [27]. Sprendimo gerinimo galimybės paremtos [33],

[34] šaltiniais.

Vykdant magistro tiriamąją dalį atliktos testavimo metodų, dirbtinio intelekto analizės,

išsiaiškinti visų šių metodų privalumai, trūkumai. Atsiţvelgiant į gautus analizės rezultatus

nuspręsta kurti testavimo metodą, paremtą dirbtiniais neuroniniais tinklais, skirtą testavimo tipo

(automatinis ar rankinis) parinkimo palengvinimui. Net jeigu šis metodas ir neišspręs

pagrindinės parinkimo problemos, jis gali būti naudojamas, kaip papildoma priemonė renkantis

testavimo tipą.

Nustačius 17 testavimo parinkimą lemiančių kriterijų, eksperimentiniu būdu surasta

dirbtinių neuroninių tinklų struktūra. Optimalūs rezultatai gauti naudojant daugiasluoksnį

neuroninį tinklą su dviem paslėptais sluoksniais, 6 neuronai pirmame ir 5 antrame sluoksniuose,

8

tikslumo funkcija SSE ir tinklą apmokant Conjugate Gradient with Powell/Beale Restarts

algoritmu. Eksperimentams naudota 1000 duomenų imtis, kuri

paruošta atsiţvelgiant į kriterijus, kurie yra neuroninio tinklo įėjimai, o jų atsakymai – tinklo

išėjimo reikšmės.

Skirtingai nei kiti egzistuojantys parinkimo būdai tarp rankinio ir automatinio testavimo,

pasiūlytas metodas apibendrina parinkimą įtakojančius kriterijus ir kompanijos sukauptą patirtį

panaudoja ateities prognozėms. Neuroninis tinklas išmoksta sudėtingas sąsajas tarp turimos

patirties duomenų greičiau nei per minutę (remiantis eksperimentų rezultatais tūkstančiui

duomenų išmokti pakanka 3 sekundţių). Kuriant parinkimo metodą vienas pagrindinių

vertinimo aspektų – pasiekiamas tikslumas. Remiantis eksperimentinių tyrimų duomenimis

apmokant tinklą su 1000 duomenų gauta, kad naujų duomenų prognozė bus pateikta su 80%

tikslumo tikimybe.

Siūlomas metodas gali būti vertingas pagalbininkas testavimo sprendimu

suinteresuotiems ţmonėms, kai nėra pakankamai laiko analizuoti ankstesnių atvejų, kai trūksta

patirties, dvejojama ar reikia parinkimo pagrįstumo. Metodo idėja gali būti pritaikoma ir kitoms

dalykinėms sritims, kuriose sprendţiama parinkimo problema.

Ateityje galima gerinti metodo rezultatų tikslumą derinant neuroninius tinklus su kitais

skaitinio intelekto metodais. Tarptautinėje hibridinių dirbtinio intelekto sistemų konferencijoje

pristatomi tyrimai patvirtina susidomėjimą ir teikiamą naudą. Parinkimo metodo atveju, galbūt

pavyktų pasiekti, kad neuroninis tinklas mokytųsi tik iš kiekvieną kartą atrinktų duomenų, taip

sumaţinant paklaidą didinančių įrašų kiekį.

Antrame skyriuje pateikta tyrimo srities analizė. Išnagrinėta tiek testavimo problemos,

esamos testų parinkimo galimybės, metrikos, tiek dirbtinio intelekto metodai testavime,

parinkimo uţdaviniuose. Suformuluota pasiūlyto metodo idėja. Trečiame skyriuje pateikta

metodo specifikacija. Ketvirtame skyriuje detalizuota metodo koncepcija, naudojami kriterijai,

formalizuota neuroninio tinklo architektūra. Penktame skyriuje aprašytos realizavimo

priemonės, optimalios struktūros ieškojimui naudoti parametrai. Šeštame skyriuje pateikti

atrinkti eksperimentinių tyrimų duomenys, supaţindinta su nagrinėtais neuroninio tinklo

parametrais. Apibendrinta nustatyta ANN struktūra, duomenų kiekio įtaka tinklo apmokymui ir

pateiktos sprendimo taikymo rekomendacijos. Septintame skyriuje suformuluotos darbo

išvados.

Darbo rezultatai buvo pristatyti:

9

1. 2010 m. konferencijoje „Informacinė visuomenė ir universitetinės studijos―, straipsnis

priimtas spausdinti leidinyje „Informacinės technologijos―, ISSN 2029-249X ir

pateiktas 1 ir 2 prieduose.

2. 2011 m. tarptautinėje konferencijoje „Hybrid Artificial Intelligence Systems―,

straipsnis išspausdintas konferencijos leidinyje [35] ir pateiktas 3 priede.

2. Metodo analizė

2.1. Analizės tikslas

Išanalizuoti esamus testavimo metodus, rasti jų privalumus ir trūkumus (jų efektyvumą,

kaštus). Nustatyti, kokie gali būti ar yra testavimo metodų vertinimo parametrai. Išanalizuoti

dirbtinio intelekto metodus ir remiantis analizės metu gautais rezultatais nuspręsti, kokiais

metodais turi būti grindţiamas siūlomas metodas.

Tyrimo analizei atlikti pasirinkti mokslinės literatūros analizės ir apibendrinimo metodai.

2.2. Tyrimo sritis, objektas ir problema

Magistrinio darbo tyrimo objektas – dirbtiniu intelektu pagrįstas metodas, skirtas

testavimo tipo parinkimui.

Įvairių programų testavimas turi didelę įtaką galutinio produkto bendrai kokybei ir

patikimumui. Aptikus įvairias klaidas dar kūrimo procese, jos kainuoja daug maţiau nei, kad

jau atidavus produktą vartotojui(-ams). Programinės įrangos testavime susiduriama su eile

problemų, tokių kaip testavimo tikslumas, testavimo efektyvumas, testų pakartotinis

panaudojimas, testavimo tipo (automatinis ar rankinis) parinkimas ir pan. Ne visada reikia ir

apsimoka automatizuoti testavimą [1], todėl yra svarbu tinkamai įvertinti testavimo tipo

parinkimą. Siekiant, sutaupyti testavimui skiriamą laiką nesumaţinant testavimo rezultatų

gavimo efektyvumo ir tikslumo, buvo nuspręsta ištirti programinės įrangos testavimo ir

dirbtinio intelekto metodus. Išnagrinėjus šiuos metodus tikimasi sukurti intelektualų testavimo

metodą, kuris galėtų būti naudojamas testų ar jų tipų parinkime, bei pačiame testavimo procese,

atitinkamai „apmokant― testus, t. y. keičiant jų parametrus, pasiūlymo galimybę. Literatūroje

randami adaptyvių bei intelektualių testų pavyzdţiai rodo, kad tokie testavimo metodai yra ypač

taikytini testuojant dideles ir sudėtingas sistemas. Siekiant sukurti intelektualų metodą, skirtą

programinės įrangos testavimo būdo parinkimui, yra svarbu išanalizuoti šiandieninius

testavimo metodus, rasti jų privalumus ir trūkumus, kad vėliau būtų galima geriau suprasti, ar

reikalingas naujas, koks nors metodas ir jeigu taip, tai koks jis turėtų būti ir kokias problemas

jis turėtų spręsti.

10

2.3. Tyrimo objekto analizė

Programinės įrangos testavimas – tai procesas, kurio metu tikrinamas produkto veikimas,

kad galėtume atsakyti į klausimą „Ar programinė įranga veikia, kaip yra apibrėţta ir tikimasi?―.

Vykdant testavimą bandoma surasti skirtumų tarp gautų ir laukiamų rezultatų, nes kuo ankščiau

aptinkama klaida, tuo jos ištaisymas kainuoja maţiau. Reikia nepamiršti, kad testavimas parodo

klaidų buvimą, bet ne jų nebuvimą.

1 pav. pateikiamas testavimo proceso ciklas, kuriame atrenkami reikalavimai sistemai ar

jos daliai, vertinimo kriterijai, testavimo strategija, planas ir testiniai rinkiniai. Vėliau duotai

sistemai, objektui ar programai šie testai vykdomi bei fiksuojami rezultatai. Lyginant gautas

reikšmes su laukiamomis sprendţiama apie aptiktas klaidas ir sistemos atitikimą reikalavimams.

1 pav. Testavimo ciklas [2]

Testavimo metodų yra daug ir įvairių (2 pav.). Ne visi jie yra naudojami kartu ar tai pačiai

programai ar paprogramei. Geriausiai tinkantis metodų rinkinys atrenkamas testavimui siekiant

sumaţinti darbo poreikį bei rezultatų gausą. Kuo programinė įranga yra sudėtingesnė, tuo

daugiau laiko gali reikėti ją ištestuoti (3 pav.) – patikrinti jos atitikimą reikalavimams,

specifikacijoms, jos funkcinį stabilumą, veikimą, tinkamumą naudoti. Laikas tampa labai

svarbus kriterijus programinės įrangos kūrime, nes jis tiesiogiai susijęs su kaina. Laikome, kad

apimtis yra pastovi.

11

2 pav. Testavimo metodų pavyzdžiai [3]

3 pav. Projekto kokybė [4]

Kartais, kai vėluoja pirmesnės projekto dalys, bandoma sutaupyti testavimo laiko

sąskaita, taip paliekant sistemą prasčiau ištestuotą. Iš kitos pusės, geras ir maţiau laiko

reikalaujantis testavimas įmonei gali laimėti laiko, taip ji atliktų projektus greičiau nei įprastai

ir galėtų padidinti savo pelną ar būti pranašesnė konkurentų tarpe.

12

4 pav. Kiekvienas IT projektas turi testavimo kiekio optimalią reikšmę [5]

Ištestuoti viską yra sudėtinga ne tik dėl laiko ir išlaidų sąnaudų, bet ir todėl, kad pats

testavimas parodo tik klaidų buvimą, bet neparodo, kad daugiau klaidų jau nebėra. 4 pav.

pavaizduota kokybės ir testavimo kiekio priklausomybė nuo testavimo kainos ir nesurastų

klaidų. Bandant ištestuoti viską aptinkamos klaidos pradeda neatsipirkti pagal kainą, nes jų

suradimui išleidţiama daug daugiau. Jeigu testuojama taupant lėšas, ar blogai atsirenkant, ką

testuoti, yra paliekama daug svarbių klaidų, kurios pateikus sistemą vartotojui kainuos dar

daugiau [5]. Todėl reikia kiekvienam projektui surasti ar nuspręsti, koks optimalus kokybės ir

išlaidų variantas tenkina projektą ir įmanomas jį kuriančiai organizacijai.

Testavimo procesą pagreitina automatinių testų naudojimas. Jis naudojamas testavimo

atvejų generavime, pavyzdţiui, galima greičiau ir daugiau patikrinti ar vartotojo įvedami

veiksmai yra teisingi ir ar gaunamas rezultatas, kurio tikimasi. Taip pat naudojamas atgaliniame

testavime, kurio tikslas yra patikrinti naujų programinės įrangos (PĮ) galimybių funkcionavimo

teisingumą ir įsitikinti, kad nauji PĮ pakeitimai nesukėlė klaidų tarp jau ištaisytų. Bandant

ištestuoti neautomatiniu būdu, patikrinama nedidelė programinės įrangos dalis arba išeikvojama

daug laiko ir sąnaudų. Testuojant PĮ kartais yra geriau naudoti rankinį testavimą, kartais

automatinį, o kartais juos abu. Kada kurį metodą geriau naudoti galima nuspręsti iš jų privalumų

ir trūkumų palyginimo [6]. Rankinio testavimo  Privalumai:

1. Rankinis testavimas gali būti naudojamas tiek maţuose, tiek dideliuose

projektuose.

13

2. Nesudėtinga sumaţinti ar padidinti testinius atvejus atsiţvelgiant į projekto

eigą.

3. Pradedantiesiems rankinis testavimas yra lengvai įsisavinamas.

4. Rankinis testavimas yra patikimesnis lyginant su automatiniu (neretai

automatizuotas testavimas neapima visų galimų testavimo atvejų).

5. Rankinis testavimas suteikia testuotojui galimybę geriau vykdyti adhoc1

testavimą. Daugiau klaidų aptinkama naudojant ad-hoc būdą, nei

automatinį.

 Trūkumai:

1. Rankiniu būdu realių apkrovų ir spartų išbandymas dideliems vartotojų

skaičiams sunkiai įmanomas.

2. Testų vykdymas rankiniu būdu yra labai daug laiko reikalaujantis darbas.

3. Sudėtinga atlikti spalvų kombinacijų atskyrimą.

Automatinio testavimo 

Privalumai:

1. Nesudėtinga išbandyti daug testavimo atvejų per ribotą laiką.

2. Galima atlikti apkrovos, įvairius našumo testus naudojant specialius

įrankius.

3. Atgalinio testavimo metodui – pats geriausias pasirinkimas.

4. Naudojamas ne vieną kartą automatinis testavimas padeda sutaupyti labai

daug laiko.

5. Automatinį testavimą tuo pačiu metu galima atlikti skirtingose

operacinėse sistemose.

 Trūkumai:

1. Testavimo atvejų realizavimas į testavimo programinį kodą ir jo

atnaujinimas reikalauja daug laiko.

2. Automatinis testavimas yra brangesnis lyginant su rankiniu testavimu.

3. Automatinio testavimo įrankiai net jei ir aptinka grafinius elementus, jie

negali pasakyti, ar jų poţymiai yra pakankamai informatyvūs ar ne.

Tokiuose atvejuose tik pats testuotojas gali tinkamai įvertinti.

1 Ad-hoc testavimas vykdomas nesuvokiant testinių atvejų sukūrimo struktūros ir be išankstinio suplanavimo.

Viena iš paskirčių testavimo pilnumui patikrinti ir įvairūs klaidų atradimai.

14

1 lentelėje esantys apibendrinti testavimo tipų privalumai ir trūkumai yra bendro

pobūdţio, todėl konkrečiam projektui reikia detalesnės informacijos norint parinkti testavimo

tipą. Pavyzdţiui, vertinant pagal testavimo aprėptį, jeigu reikia ištestuoti platesnę sritį, tai geriau

rinktis rankinį testavimą. Jeigu svarbu tikslus perţiūrėjimas tos pačios srities, ar siauresnės

srities gilesnis ištestavimas, geriau rinktis automatinį. Praktikoje automatinis testavimas negali

visiškai pakeisti rankinio testavimo, todėl parinkimo problema išlieka aktuali.

1 lentelė. Testavimo tipų palyginimas

Kriterijus Rankinis Automatinis

Kaina (+) Pigesnis (–) Brangesnis

Laikas (–) Vykdomi lėčiau (+) Vykdomi greičiau

— (–) Testų kodo parengimas lėtas

Reikalavimų

pasikeitimai

(+) Nesudėtingai įgyvendinami (–) Reikalingas testų kodo

pakeitimas

Testavimo aprėptis (+) Platesnė (–) Fiksuota

Teksto skaitymas (+) Skaito (–) Neskaito, nesuvokia prasmių

Spalvų skyrimas (–) Priklauso nuo jų kombinacijų (+) Gerai skiria

Atgalinis testavimas (–) Sudėtingas, laiko

reikalaujantis

(+) Puikiai tinka

Išmokstamumas (+) Nesudėtingas (–) Sudėtingas, ypač

pradedantiems

Klaidų aptikimas

ţvalgantis, Ad-hoc

(+) Daugiau klaidų randama (–) Maţiau

Papildomam apibendrinimui pateikiamas 5 pav., vaizduojantis nuo ko priklauso testavimo

atvejų „gerumas―. Efektyvumas parodo, ar surandama klaidų, ar bent jau yra polinkis aptikti

klaidas. Pavyzdingumas parodo, kiek turi sugebėti testuoti dalykų, taip apimant kelis testavimo

atvejus. Kiti du kriterijai apimą kainą: kiek yra ekonomiška vykdyti, šalinti defektus, analizuoti

konkretų testavimo atvejį ir kiek reikalauja prieţiūros, palaikymo kiekvieną kartą programinei

įrangai pakitus ar pasikeitus [7].

5 pav. Testavimo atvejų „gerumas“ pagal Keviat diagramą [7]

15

Iš 5 pav. galima vaizdţiau palyginti automatinį ir rankinį testavimus. Automatinio

testavimo nauda priklauso nuo pakartotino panaudojimo skaičiaus. Jeigu testas bus naudojamas

vieną kartą, geriau naudoti rankinį testavimą, nes šiuo atveju jis yra pranašesnis uţ automatinį.

Tačiau ši diagrama nenurodo, kurį būdą geriau naudoti konkrečiu atveju. Pavyzdţiui, turimas

konkretus IT projektas ir projektų vadovui yra gan sudėtinga nuspręsti, kurį metodą geriau

taikyti, ar apsimoka išleisti papildomas išlaidas automatiniam testavimui.

2.4. Metrikos

Norint sėkmingai įvertinti testavimo metodus nėra konkretaus ir vieningo atsakymo, koki

matai ar parametrai turi būti naudojami. Naudojant metrikas (kiekybinius matus, parodančius,

kiek sistema ar jos komponentas atitinka nustatytus atributus) atliekamos defektų duomenų,

metodų, projektų analizės. Įvairiuose literatūros šaltiniuose geromis metrikomis vadinamos tos,

kurios yra objektyvios, išmatuojamos, reikšmingos, paprastos ir sudarytos iš nesudėtingai

gaunamų duomenų. Nusistatant metrikas pirmiausiai reikia nuspręsti, ką norima įvertinti ir kurie

matavimai būtų reikšmingiausi. Iš eilės nustatinėjant visas ţinomas metrikas tik eikvojamas

laikas, o naudos iš to ne daug [26]. Todėl sudarant aktualių klausimų sąrašą palengvėja metrikų

pasirinkimas. Klausimai gali būti:

1. Kiek laiko uţtrunka paruošti testavimo scenarijų?

2. Kiek kartų naudosime pasirinktus testus?

3. Kiek reikia testuotojo/sistemos laiko įvykdyti pasirinktus testus?

4. Kiek reikia testuotojų įvykdyti pasirinktiems testams?

5. Kaip apibrėţiama testų aprėptis (KLOC, FP ir pan.)?

6. Kiek laiko uţtrunka klaidų analizavimas?

7. Kokiu tikslumu norima įvertinti testus? Minutės, sekundės ar mikrosekundės.

8. Ar turima pakankamai resursų (laiko, įrankių, ţmonių) automatizuoti testus?

9. Kokį kainos ir gaunamos vertės santykį sudaro automatinių testų palaikymas?

Kitas būdas nusistatyti metrikas gali būti išsirenkant svarbius testavimo atributus.

Paprastai išskiriami palaikomumo, efektyvumo, patikimumo, prisitaikomumo,

panaudojamumo, tvirtumo, portatyvumo ir nuodugnumo atributai. Testavimo duomenų analizė

yra atliekama naudojant metrikas – kiekybinius matus, parodančius, kiek sistema ar jos

komponentas atitinka nustatytus atributus.

Keletas pavyzdţių, kokios gali būti testavimo kokybės metrikos:

 MTTF (angl. Mean Time to Failure) arba MTBF (angl. Mean Time

Between Failure) – vidutinis laikas tarp sistemos lūţimų. MTTF metrika

16

F

D

nusako laiką tarp dviejų klaidų ar lūţimų, arba kaip ilgai vidutiniškai

programinė įranga gali veikti be klaidų. Ši metrika daţniausiai naudojama

kritinio saugumo sistemose.

N

MTTF, čia NF – sistemos lūţimų skaičius per nagrinėjamą laikotarpį, NM

NM

– mėnesių skaičius nagrinėjamame laikotarpyje.

 DD (angl. Defect Density) – defektų tankis. Defektų kiekio matu laikomas

per tam tikrą laikotarpį surastų defektų kiekis, pvz. surastų defektų

skaičius nuo modulio sukūrimo iki esamos datos. DD naudojamas

palyginti defektų tankius skirtinguose programinės įrangos

komponentuose. Tai padeda identifikuoti kandidatus detalesnei perţiūrai,

testavimui, struktūros pertvarkymui (angl. reengineering) ar pakeitimui.

Kuo defektų tankis maţesnis tuo geresnė kokybė.

 ND ND – ţinomų defektų kiekis, S –

dydis, paprastai matuojamas

DD, čia

S

KLOC (angl. Kilo Lines Of Code) tūkstančiais kodo eilučių, bet gali būti

naudojami ir funkciniai taškai.

 DDP (angl. Defect Detection Percentage) – procentinis defektų

aptikimas.

F

DDP100%, čia FD – aptikti defektai testavimo metu, ND – ţinomų ND

defektų kiekis.

 AB (angl. Achieving Budget) – testavimui skirtų finansinių lėšų

išnaudojimas. Ši metrika padeda įvertinti testavimui skirtų lėšų

išnaudojimą. Naudojant AB galima suţinoti ar rankinis, ar automatinis

testas sunaudoja maţiau pinigų ir

CA CA – reali kaina išnaudota testavimui,
neviršija nustatyto limito. AB, čia CB

CB – testavimui numatytas biudţetas.

 DDT (angl. Defect Detected in Testing) – testavimo metu aptiktų defektų

skaičius. Pagal šią metriką galima spręsti, kuriuo metodu (automatinis,

rankinis)

17

DD , čia DD – testavimo

aptinkame daugiau sistemoje esančių defektų. DDT

TD

metu aptikti defektai, TD – visi sistemoje esantys defektai.

 CE (angl. Coverage Extension) – testavimo apimties padidinimas.

Palyginama surastos klaidos rankiniu testavimu su papildomom klaidom,

kurias padėjo aptikti automatiniai testai (rankiniu testavimu jos buvo

praleistos, neaptiktos).

Šis įvertinimas naudingas tuo, kad galima palyginti automatinių testų pridėtinę

vertę klaidų aptikime.

 Laikas skirtas analizuoti automatinių testų pateiktoms klaidoms. Rankinių

testų metu aptiktos klaidos nereikalauja papildomos analizės, nes iškart

ţinoma, ką vykdant ir kokia klaida buvo aptikta.

 Klaidingų klaidų skaičius pateiktas automatinių testų metu. Tai klaidos,

kurios iš tikro nėra klaidos. Toks įvertinimas gali padėti nustatyti, ar

automatiniai testai daugiau linkę padėti ar klaidinti.

Siekiant palyginti testavimo metodus reikia remtis keliais vertinimo kriterijais, taip

galima gauti tikslesnį sprendimą, kiek verta automatizuoti testavimą arba kuris testavimas

(rankinis ar automatinis) yra naudingesnis konkrečioje situacijoje.

2.5. Vartotojų analizė

2.5.1. Vartotojų aibė, tipai, savybės

Intelektualių programinių įrangų testavimo metodais naudojasi ir vadovaujasi jų

testuotojai, projektų vadovai.

2.5.2. Vartotojų tikslai ir problemos

Vartotojai susiduria su įvairiomis problemomis, tokiomis kaip atliekamo testavimo

tikslumas, patikimumas, efektyvumas, pakartotinis testų scenarijų panaudojimas, testavimo tipo

parinkimas. Pagrindinis vartotojų tikslas yra kuo efektyviau ištestuoti programinę įrangą.

Vis daţniau kuriamos programinės įrangos testavimui yra pasirenkami automatiniai testai.

Ruošiant automatinius testus yra siekiama uţtikrinti testavimo tikslumą (automatiniai testai

padengia visus aprašytus scenarijus ir yra išvengiama ţmogiškųjų klaidų, kai pamirštama

pratestuoti vieną ar kitą scenarijų), o taip pat yra siekiama sutaupyti testavimui skiriamą laiką

18

(automatiniai testai patikrina visus aprašytus scenarijus greičiau nei tai padarytų testuotojas;

automatinio testo vykdymo metu testuotojas gali atlikti kitus jam priskirtus darbus). Tačiau taip

pat svarbu ţinoti, kad automatinių testų paruošimas yra daug laiko reikalaujantis darbas. Todėl

sprendţiant, ar tam tikro komponento testavimui bus kuriamas automatinis testas, būtina

įvertinti laiko sąnaudas, kaštus ir automatinių testų teikiamą naudą. Pagrindinis asmuo, kuris

turi planuoti atliekamus darbus, nustatyti darbų trukmes bei atitinkamai sekti kaip yra vykdomi

darbai, yra projekto vadovas. Darbų planavimas, jų terminų nustatymas yra atliekamas

konsultuojantis su tam tikros srities

specialistais, kurie geriau išmano tam tikrą dalykinę sritį ir gali aiškiai nusakyti darbų sudėtį, jų

trukmę ir panašius dalykus. Tokiu pačiu principu yra nustatoma ir testavimo darbų trukmė.

Tačiau visais atvejais projekto vadovas turi pateikti galutinį sprendimą dėl vienų ar kitų darbų

atlikimo, įvertindamas projekto apimtį, kaštus ir laiką. Testavimo etape projektų vadovai

siekdami tinkamai koordinuoti viso projekto vykdymą turi atitinkamai įvertinti testavimo tipo

parinkimą. Pagrindinė problema yra ta, kad ne visada projektų vadovai turi pakankamai ţinių,

leidţiančių teisingai parinkti testavimo tipą, o net jei ir tų ţinių pakanka, testavimo tipo

parinkimas nėra vienareikšmis ir turi būti įvertinta eilė faktorių, tam kad būtų galima nutarti,

kad testavimui yra geriau naudoti rankinį ar automatinį testavimą, ar jų derinius konkrečiam

testavimo procesui.

2.6. Esamų sprendimų analizė

2.6.1. Dirbtinio neuroninio tinklo pristatymas

Dirbtinių neuroninių tinklų (angl. Artificial neural networks – ANN) idėja kilo iš

neurobiologijos. Neuroniniai tinklai yra sudaryti iš tarpusavyje susijungusių neuronų,

suskirstytų į sluoksnius. Į kiekvieną tinklo neuroną yra patalpinama perdavimo funkcija.

Kiekvieno sluoksnio neuronai yra sujungti su gretimų sluoksnių neuronais. Daţniausiai to paties

sluoksnio neuronai nėra sujungti. Tokia neuronų ir jungčių visuma vadinama dirbtiniu

neuroniniu tinklu. Neuroniniai tinklai turi įėjimo, išėjimo ir tarpinius sluoksnius [8].

Labiausiai paplitusios yra dvi dirbtinių neuroninių tinklų rūšys:

 vienasluoksnis perceptronas arba tiesiog perceptronas (angl. single layer perceptron –

SLP) – tiesiog vienas neuronas, struktūra pateikta 6 paveiksle.

19

6 pav. Paprastas neuronas

Daţnai aktyvavimo funkcija naudojama sigmoidinė funkcija f (x) , čia

 net x wij .

 daugiasluoksnis perceptronas (angl. multilayer perceptron – MLP) – daug neuronų,

išdėstytų sluoksniais. Kiekvieno sluoksnio neuronų išėjimai sujungti su kito iš eilės

sluoksnio neuronų įėjimais. Įėjimo sluoksnis – pradiniai duomenys, išėjimo sluoksnis –

paskutiniame sluoksnyje esantys neuronai ir jų išėjimai. Visi kiti sluoksniai vadinami

paslėptais, tarpiniais. Neuroninio tinklo struktūra pateikta 7 paveiksle.

7 pav. Neuroninio tinklo struktūra

Neuroninius tinklus aprašo viena arba kelios matematinės funkcijos. Ryšius tarp neuronų

charakterizuoja svoriai. Neuroninio tinklo mokymas yra tų svorių radimas pasirinktu

matematinio optimizavimo metodu. Neuroniniai tinklai yra elegantiškas būdas modeliuoti

sistemas, kurių įėjimo – išėjimo priklausomybė neţinoma, negalima pakankamai tiksliai

išmatuoti stebimos priklausomybės charakteristikų. Neuroniniai tinklai neţinomą

priklausomybę „išmoksta― iš pavyzdţių aibės, kuri apibūdina šią priklausomybę. Neuroniniai

net e 1

1

j

20

tinklai gali būti naudojami kaip neparametriniai klasifikavimo įrankiai. Jais klasifikuojant

nereikia ţinoti duomenų pasiskirstymo. Mokydamiesi neuroniniai tinklai minimizuoja nuostolių

funkciją, tačiau nėra tiesiogiai minimizuojama paklaida. Neuroniniai tinklai daugiausia

naudojami klasifikavimo ir prognozavimo uţdaviniams spręsti. Tuo pasinaudojant ANN

naudojamas automatizuoto orakulo nustatymui, kuris padeda sumaţinti programinės įrangos

testavimo laiką ir sąnaudas [9].

2.6.2. Orakulo gavimas remiantis ANN

Norint sukurti programos automatizuotą orakulą remiantis ANN atliekami du etapai:

ANN apmokomų būti orakulu ir įvertinimo [9].

2.6.2.1. Apmokymo etapas.

Atsitiktinai sugeneruojami įėjimai pagal programos specifikacijas. Nors atsitiktinis

generavimas neuţtikrina visų galimų įėjimų atvejų, tačiau jis uţtikrina, kad nebus spiečiaus

įėjimų. Neuroninis tinklas gerai apmokomas, jeigu įėjimai apima kuo platesnį spektrą pagal

programos specifikacijas. Testuojama programa įvykdoma su gautais įėjimais ir pagal kiekvieną

įėjimo atvejį gauname atitinkamus išėjimus. ANN parametrai turi būti nustatyti priklausomai

nuo pasirinkto apmokymo algoritmo. Daţniausiai naudojamas tinklo treniravimo (angl.

backpropagation2) metodas. Apmokytas ANN naudojamas kaip automatizuotas orakulas, nes

jis „įsisavino― pagal kokius įėjimus, kaip turi elgtis programa.

8 pav. ANN apmokymo procesas

2.6.2.2. Įvertinimo etapas

Į išbandytą programą specialiai įterpiama keletas klaidų, kad turėtume keistų ar su

defektais programos versijų. Po klaidų įterpimo sukuriami atskiri įėjimų komplektai tokiu pat

būdu, kaip buvo sukurti apmokomai programai. Po to, įvykdome klaidingą programą su gautais

2 Backpropagation – neuroninio tinklo treniravimo metodas, kur pradinis įėjimas į sistemą (tinklą)

lyginamas su pageidaujamu išėjimu ir sistema pritaikoma tol, kol skirtumas tarp įėjimo ir išėjimo yra

minimizuojamas – įėjimas supanašėtų su išėjimu.

21

įėjimais ir gavę atitinkamus išėjimus panaudojam juos naujiems apmokymams. Tada

apskaičiuojame nuotolį tarp neuroninio tinklo išėjimo ir atitinkamo programos išėjimo.

Nuotolis kartu su ANN išėjimu ir klaidingos programos išėjimu naudojami nustatyti, ar

klaidingos versijos gautas išėjimas iš tikrųjų yra blogas ar ne.

9 pav. ANN įvertinimo procesas

Duomenų palyginimas naudojant ANN yra kaip alternatyva testuotojui ţmogui, kuris

palyginęs klaidingos ir geros versijos rezultatus pasako, ar gautas išėjimas yra blogas ar ne.

2.6.3. Miglotos informacijos tinklo pristatymas

Miglotos informacijos tinklas (angl. Information Fuzzy Network – IFN) yra metodas,

sukurtas ţinių atskleidimui ir duomenų gavybai. Metodą sukūrė Mark Last bendradarbiaujant

su Oded Maimon ir Abraham Kandel [10]. IFN gali turėti kintamą sluoksnių skaičių ir vieną

objekto (taikinio) sluoksnį. Kiekvienas IFN paslėptas sluoksnis yra atributo įėjimas, o ne svorių

suma, kaip kad ANN. IFN turi šakninį mazgą, o n-tasis paslėptas sluoksnis yra sudarytas iš visų

galimų įėjimo atributo kombinacijų. Kadangi mazgas bet kokiame paslėptame sluoksnyje

atstovauja ekvivalentiškų klasių kombinaciją, kiekvienas testuojamas atvejis gali būti

jungiamas su vienu ir tiktai vienu mazgu kiekviename paslėptame sluoksnyje, pagal jo įėjimo

atributų vertes.

10 pav. IFN struktūra

Miglotos informacijos tinklo struktūra pateikta 10 paveiksle. Tinklas yra dviejų sluoksnių,

kurie pasako, kad turime du įėjimo atributus. Pirmas sluoksnis atitinka pirmą įėjimo atributą, o

22

antras sluoksnis – antrą atributą. Pirmas atributas turi tris reikšmes, tai pirmo sluoksnio mazgai

1, 2 ir 3, kurie sudaro tris ekvivalenčias klases. Iš jų 1 ir 2 mazgas yra išskaidytas konstruojant

tinklą. Antras sluoksnis turi 4 mazgų derinius gautus iš dviejų antro įėjimo atributų ir dviejų

suskaidytų mazgų iš pirmo sluoksnio. Objekto sluoksnis – tai objekto atributas, kuris susideda

iš trijų mazgų.

IFN gali būti naudojami numatyti neţinomas objekto reikšmes, šiek tiek panašiai į

sprendimo medţius. Daugiasluoksnis tinklas naudojamas, kai neturima išankstinių duomenų

apie atributus. Vieno ar dviejų sluoksnių tinklas sudaromas, jeigu iš anksto turime informaciją

apie atributus, jų ryšius. Miglotos informacijos tinklas, kaip ir dirbtinio intelekto, gali būti

naudojamas automatizuoto orakulo nustatymui.

2.6.4. Orakulo gavimas remiantis IFN

Norint sukurti programos automatizuotą orakulą remiantis IFN atliekami du etapai:

tinklo konstravimo ir įvertinimo [9].

2.6.4.1. Tinklo konstravimo etapas

 Apmokyti miglotos informacijos tinklus naudojamas stebėjimų metodas.

11 pav. Miglotos informacijos tinklo konstravimo procesas

Įėjimų generavimas atliekamas atsitiktiniu būdu. Ištestuota programa įvykdoma su gautais

įėjimais ir gauname įėjimų su atitinkamais išėjimais failą, kuris panaudojamas konstruojant

miglotos informacijos tinklą. Tinklo indukcijos algoritmas yra pagrįstas išankstiniu trumpinimo

(angl. pre-pruning) metodu – kai joks poţymis nesukelia statistinio reikšmingo entropijos

maţėjimo, tinklo konstravimas stabdomas.

2.6.4.2. Įvertinimo etapas

Šis etapas yra panašus į neuroninių tinklų įvertinimo etapą. Patikrinimo failas,

sugeneruotas neuroninio tinklo, yra įvykdomas apmokyto IFN ir klaidingos programos versijos,

tada jų išėjimai palyginami įvertinti, ar programos išėjimai yra geri ar ne.

23

2.6.5. ANN ir IFN palyginimas

Tiek ANN, tiek IFN naudojami orakului nustatyti, abu turi kintamą sluoksnių skaičių.

Tačiau dirbtinio neuroninio tinklo apmokymui naudojamas online metodas, o miglotos

informacijos tinklui – offline. Struktūrinis skirtumas IFN, jog jis turi šakninį mazgą.

Remiantis [9] straipsnio atliktais tyrinėjimais abu būdai yra efektyvūs, kai klaidingų

atvejų procentas yra pakankamai didelis. ANN yra geresnis nuolat vertinamų išėjimų

klasifikatorius. Ypač, kai mokomų įrašų skaičius yra maţas. Pagrindinis IFN pranašumas prieš

ANN yra tai, kad IFN yra daug greitesnis. O dėl savo struktūros abu tinklai tinka intelektualiam

testavimui vykdyti.

2.6.6. Genetiniai algoritmai

Genetinių algoritmų (angl. Genetic Algorithms – GA) pradininku laikomas John Holland

[11]. 1975 metais jis pasiūlė matematinį optimizavimo metodą, paremtą natūraliais gamtoje

vykstančiais procesais: natūraliąja individų atranka, kryţminimu ir mutacija. Metodas buvo

pradėtas plačiai taikyti atsiradus kompiuteriams. GA – vienas populiariausių meta euristinių

algoritmų – stochastinis optimizavimo metodas, kadangi vienas iš procesų yra atsitiktinė, bet į

konkretų tikslą orientuota individų atranka. Pasinaudojus evoliucijos mechanizmais, galima

sukurti programas, kurios sprendţia problemas netgi tada, kai nėra pilnai aiškus sprendimo

kelias [11]. Genetiniai algoritmai daţniausiai naudojami intelektualiai paieškai, optimizavimui

ir kompiuterių apmokymam. GA yra daţnai naudojamas su įvairiais dirbtinio intelekto metodais.

Šiuo metu GA yra naudojami kartu su neuroniniais tinklais ir miglota logika spręsti sudėtingas

problemas. Dėl jų jungtinio panaudojimo daugeliui problemų spręsti neuroniniai tinklai ir

miglota logika vadinama „soft-computing― [8].

Pagrindinis evoliucijos mechanizmas – tai natūrali atranka. Jos esmė – labiau prisitaikę

turi daugiau šansų išlikti ir palikti po savęs palikuonis. Genetinės informacijos perdavimo dėka

palikuonys paveldi būdingus tėvų bruoţus. Todėl stiprių individų palikuonys taip pat santykinai

gerai bus prisitaikę, o jų dalis bendroje masėje augs.

GA metodas paremtas individų populiacija. Kiekvienas individas yra uţkoduotas atskiras

tikslo funkcijos sprendinys. Kuo jos reikšmė didesnė, tuo individas arčiau optimalaus

sprendinio. Individai daţniausiai uţkoduojami dvejetainėje sistemoje, tačiau galimas ir kitoks

kodavimas. Kiekviena gardelė uţkoduojama 1 arba 0 vadinama genu, o iš jų sudarytas

uţkoduotas individas – chromosoma. Pirmiausia suformuojama pradinė individų populiacija. Po

to, kartojami ciklai, kol pasiekiamas norimo tikslumo uţdavinio sprendinys. Neretai vienas

24

sudėtingiausių uţdavinių pasiruošiant genetiniam algoritmui yra tikslo funkcijos

suformulavimas [11].

Kiekvienoje generacijoje atsitiktinai atrenkami individai iš esamos populiacijos. Jie yra

tėvai, naudojami sukurti vaikus kitai generacijai. Generacijų metu populiacija konverguoja į

optimalų sprendinį. GA naudoja tris pagrindinius ţingsnius kurti kitą generaciją iš esamos

populiacijos:

1) Atranka – atrenkami individai, vadinami tėvais, kurių genai naudojami naujai

populiacijai kurti;

2) Kryţminimas – sujungiami tėvų genai ir sukuriami vaikai kitai populiacijai;

3) Mutacija – populiacijos individams atsitiktinai keičiami genai.

12 pav. Genetinio algoritmo struktūra [12]

Genetinio algoritmo idėją iliustruoja 12 pav. Pasirinkus pradinę populiaciją, evoliucija

prasideda nuo visiškai atsitiktinių kitimų. Gavus naują populiacijos kartą (kandidatus)

įvertinamas jos tinkamumas, atrenkamas tam tikras naujos kartos individų skaičius, pagal

atrankos kriterijų. Atrinktieji individai pakeičiami darant mutacijas arba rekombinacijas ir

sukuriama nauja populiacija. Vėliau viskas kartojama, atrenkant naujus tinkamiausius

individus, sukuriant naują populiaciją. Ciklas kartojamas, kol gaunamas uţduotį tenkinantis

sprendimas.

2.6.7. Spiečiaus intelektas

„Išlieka tik tie, kurie darosi altruistiški. Visos populiacijos, kurios nebuvo altruistiškos,

išmirė. Tie, kurie vienas kitam padeda, maţiau rizikuoja―, - tvirtina profesorius Šarūnas

Raudys [13].

25

Spiečiaus intelektas (angl. Swarm Intelligence – SI) apibūdina decentralizuotų,

saviorganizuotų, natūralių ar dirbtinių sistemų kolektyvinį elgesį. Literatūroje sutinkami

spiečiaus intelekto apibūdinamai yra:

 Bet koks bandymas suprojektuoti algoritmus ar problemas spendţiančius įrenginius,

remiantis vabzdţių kolonijų ir kitų gyvūnų visuomeniniu elgesiu [14].

 „Kvailos dalelės, tinkamai sujungtos į spiečių duoda protingus rezultatus.― Kevin

Kelly

 Intelektualios sąveikos atsiradimas tarp atskirų grupės agentų [14].

 SI terminas naudojamas išreikšti dirbtinio intelekto sistemas, kur paprastų individų

kolektyvinis elgesys sukelia nuoseklių sprendimų ar struktūrų susidarymą [15].

Spiečiaus intelekto sąvoka kilo studijuojant įvairių vabzdţių kaip skruzdţių, bičių ar

paukščių gyvenimą. Pavienės bitės arba skruzdėlės nepasiţymi protiniais sugebėjimais, bet jų

spiečiai ir kolonijos – taip! Kaip kolonijiniai gyvūnai organizuoja savo kolonijos veiklą: kuria

greitkelius, stato lizdus bei organizuoja koordinuotus reidus. Tai ir yra pagrindiniai „spiečių―

teorijos uţdaviniai. Skruzdėlės nėra maţi inţinieriai, architektai arba kariai – bent jau kaip atskiri

individai. Stenfordo universiteto biologė Debora Gordon pasakoja: „Atskirtos skruzdėlės nėra

protingos, tačiau jų spiečiai, taip.― Tiktai kolonija sugeba išspręsti tokius uţdavinius, kaip

trumpiausio kelio paieška suradus geriausią maisto šaltinį, individų paskirstymas įvairioms

funkcijoms atlikti, teritorijos apsauga nuo kaimynų bei stambių ir kur kas pavojingesnių

įsibrovėlių nei pačios skruzdėlės [16].

Kaip viskas taip yra koordinuojama, jeigu kolonijose nėra jokių vadybininkų arba

generolų, nei vienas kolonijos individas nemato bendro vaizdo? Kaip bebūtų kolonijos daţnai

elgiasi kaip vientisas organizmas. Viskas veikia vykstant nesuskaičiuojamai daugybei kelių

paprastų sąveikų tarp kolonijos narių. Tokį reiškinį mokslininkai vadina saviorganizacija [16].

Spiečiaus intelekto vieni iš privalumų yra, kad jis gali pasiūlyti sprendimus įvairioms

problemų rūšims spręsti. Sistemos yra labai tvirtos ir lanksčios, atsparios aplinkos

pasikeitimams. Vientisos sistemos elgesys viršija vieno individo turimus elgesio gebėjimus

[17]. SI populiariausi optimizavimo algoritmai yra skruzdţių kolonijos ir dalelių spiečius [18].

2.6.7.1. Skruzdžių kolonijos optimizavimo algoritmas

Skruzdţių kolonijos optimizavimo (angl. Ant Colony Optimization – ACO) algoritmą

1992 metais pasiūlė Marco Dorigo. Skruzdţių kolonijos elgesys yra vienas iš populiariausių

spiečiaus elgesio modelių. Pavienės skruzdėlės elgiasi atsitiktinai ir be kaţkokio pastebimo

26

tikslo, bet kai atsiranda kolektyvinės sąveikos tarp skruzdţių, galima stebėti jų spiečiaus

intelektą ir elgesį, kuris gali spręsti daug problemų. Skruzdţių spiečius gali nustatyti trumpiausią

kelią į maisto šaltinį, pamaitinti visą koloniją, pastatyti didelę struktūrą, ir prisitaikyti prie

įvairių situacijų. Tinka spręsti įvairias problemas, kurias galima pavaizduoti grafu.

ACO algoritmo pagrindinė idėja kilo stebint skruzdţių maisto atsargų paieškas. 13 pav.

pavaizduota skruzdţių maisto paieška detalizuojama trim punktais [18]:

1. Pirma skruzdėlė, kuri atsitiktiniu būdu surado maisto (ţymima F) parneša jį į lizdą

(ţymima N) ţymėdama visą nueinamą kelią feromonu3. Grįţta tuo pačiu keliu,

kuriuo ir nuėjo.

2. Skruzdėlės keliauja visais įmanomais keliais, šiuo atveju jų yra keturi. Dėl

didesnio feromonų kiekio stiprėjantis takas tampa patrauklesniu keliu, taip pat tai

yra ir trumpiausias maršrutas nuo lizdo iki maisto.

3. Palaipsniui skruzdėlės renkasi trumpiausią maršrutą, o kiti ilgesni keliai išblėsta,

nes silpnėja ir išnyksta paliktas feromonų kiekis.

13 pav. Skruzdžių kolonijos natūralus optimizavimo algoritmas [19]

2.6.7.2. Dalelių spiečiaus optimizavimo algoritmas

Dalelių spiečiaus optimizavimo (angl. Particle Swarm Optimization – PSO) algoritmą

1995 metais pasiūlė Russ Eberhart ir James Kennedy [20], [21]. PSO sukurtas remiantis

paukščių bandos elgesiu ir ţuvų mokyklų stebėjimais [15]. Šis algoritmas yra panašus į GA.

3 Feromonai – gyvūnų egzokrininių liaukų sekretai, perduodantys informaciją tos pačios rūšies gyvūnams.

27

Sistema suţadinama su atsitiktinių sprendimų populiacija ir ieškoma optimalumo atnaujinant

kartas. Tačiau priešingai nei GA, PSO nenaudoja kryţminimo ir mutacijų. PSO algoritme

potencialūs sprendimai skrieja per probleminę erdvę sekant palankiausias sąlygas. Kiekvienas

atskiras sprendimas paieškos erdvėje yra tarsi „paukštis―, kuris pavadinamas dalele. Visos

dalelės turi tinkamumo reikšmes, kurios siekiant optimizuoti nustatomos tinkamumo funkcija.

Taip pat dalelės turi kryptį ir greitį, kuris nukreipia dalelių skriejimą. Dalelės skrieja per

probleminę erdvę sekdamos dabartinę optimalią dalelę, kuri vadinama gidu [18].

Vadinasi, spiečius susideda iš dalelių rinkinio, kuriame kiekviena dalelė atstovauja

potencialiam sprendimui. Dalelės skrieja per probleminę erdvę, kur kiekvienos dalelės padėtis

keičiama pagal jos pačios patirtį ir jos kaimynus. Paţymėkime dalelės Pi Pi (t) probleminėje

erdvėje poziciją xi (t)laiko momentu t . Dalelės padėtis pakeičiama pridedant kryptingą greitį

vi (t) į einamą poziciją. Greičio vektorius vi (t) valdo optimizavimo procesą ir atspindi socialiai

apsikeistą informaciją. Kiekvienos dalelės padėties pakeitimas gali būti išreiškiamas formule

[22]:

 xi (t) xi (t 1) vi (t) (1)

Detalizuojamas dalelių spiečiaus algoritmas gali remtis geriausia dalelės asmenine savybe

(angl. individual best), geriausia bendra visų dalelių savybe (angl. global best) arba vietinio rato

geriausia dalelių savybe (angl. local best). Pirmuoju atveju, kiekvienos dalelės veiklos rezultatai

F dabartinėje jos padėtyje lyginami su jos geriausiais rezultatais ankstesnėje padėtyje (pbest).

Kitų dalelių informacija nenaudojama. Jeigu F(xi (t)) pbesti , tai

pbesti F(xi (t)) (2) x pbesti xi (t) (3)

Po veiklos rezultatų palyginimo pakeičiama dalelės kryptis ir greitis pagal formulę: vi

(t) vi (t 1) (x pbesti xi (t)) , (4)

čia reikšmė yra atsitiktinis teigiamas skaičius. Jį pasirenka vartotojas. Maţos

reikšmės labiau linkę į sklandţią trajektoriją, o didelės – įtakoja svyravimus atsirandančius

trajektorijoje. Tada kiekviena dalelė atskirai perkeliama į naują padėtį: v (t)

 (5)

 (6)

ir kartojamas procesas nuo veiklos rezultatų palyginimo, kol dalelės supanašėja.

) 1 () (t x t x i i i

1 t t

28

Antruoju atveju, bendra visų dalelių savybė gbest pavaizduoja PSO ţvaigţdės kaimynystės

struktūrą. Pagrindinis skirtumas lyginant su ankstesniu atveju, kad naudojama ir kitų dalelių

informacija. Palyginama kiekvienos dalelės veiklos rezultatai su bendrais geriausiais veiklos

rezultatais

gbesti F(xi (t)) (7) xgbesti xi (t) (8)

Tada dalelės kryptis ir greitis pakeičiami pagal formulę:

 vi (t) vi (t 1) 1(x pbesti xi (t)) 2(xgbest xi (t)), (9)

čia 1 ir 2 yra atsitiktiniai skaičiai.

Trečiuoju atveju, labai panašus principas į antrąjį atvejį, tik vaizduojama rato kaimynystės

struktūra. Vietoj gbest naudojamas lbest 7, 8 ir 9 formulėse. Naudojant lbest vyksta lėtesnis

panašėjimas negu naudojant gbest, todėl įtakoja geresnius spendimus ir vykdo paiešką didesnėje

paieškos erdvėje [22].

PSO algoritmas, palyginti su kitais evoliuciniais algoritmais (skruzdţių optimizavimo

algoritmais, genetiniais algoritmais), yra pranašesnis, nes mokymo metu nėra eliminuojami

silpniausiai pasirodę individai. Ši savybė yra labai svarbi dirbant su sparčiai, kritiškai

kintančiomis aplinkomis, nes yra svarbu adekvačiai sureaguoti ir į skirtingas situacijas, kurios

daţnai gali būti visiškai priešingos esamai situacijai. Testuojant sistemas ar jų dalis galima tik

spėlioti ar jau yra aptiktos visos klaidos, o gal ištestuotose srityse atlikus pakeitimus atsirado

naujų klaidų. Tokiais atvejais yra didelė galimybė, kad spiečiaus intelekto algoritmo

pritaikymas, priimant sprendimus, galėtų gerokai pagerinti galinius testavimo rezultatus.

PSO yra panaudotas tokiuose praktiniuose taikymuose, kaip dirbtiniuose neuroniniuose

tinkluose ir gramatiniuose vystymosi modeliuose [15]. Šis metodas gali būti taikomas ne tik

vertybinių popierių rinkų pokyčiams prognozuoti, bet taip pat ir sprendimams priimti

telekomunikacijų, logistikos ir kt. srityse [23].

2.6.8. Genetinio algoritmo ir spiečiaus intelekto palyginimas

Tiek GA, tiek SI yra optimizavimo algoritmai. GA ir PSO yra panašios struktūros, naudoja

tinkamumo, tikslo funkcijas. Dalelė PSO algoritme yra panaši į chromosomą, kuri yra GA

populiacijos narys. Tiek chromosoma, tiek dalelė atstovauja galimiems problemos

sprendimams [24]. PSO neturi kryţminimų ir mutacijų, nes remiasi paukščių bandos elgesiu.

PSO algoritme dalelės atnaujina save su vidiniu greičiu, jos taip pat turi atmintį, kuri yra svarbi

algoritmui [25]. GA remiasi natūralia individų atranka, kurioje neprisitaikę individai miršta, ko

29

nėra PSO algoritme. Dėl šios prieţasties GA yra greitesnis, tačiau, jeigu dirbama su jautria

pokyčiams ir nuolat besikeičiančia sistema geriau tinka PSO [27]. Šiuo atveju GA trūkumas

dirbant su tokiomis sistemomis, kad kritiškai pasikeitus situacijai gali būti reikalingi prarasti

duomenys.

2.7. Siekiamas sprendimas

Siekiama sukurti metodą, kuris būtų skirtas testavimo metodo parinkimui ir nurodytų,

koks testavimo metodas galėtų būti naudojamas tam tikro testavimo atveju. Parenkant testavimo

metodą siekiama įvertinti šiuos esminius kriterijus: testavimo efektyvumą ir tikslumą. Atlikus

tyrimo objektų, vartotojų, esamų spendimų analizes pastebėta, kad daţniausiai pasirenkami

testavimo tipai pagal jų privalumus, trūkumus, ar testuotojo, vadovo intuiciją. Daugelis

testavimo atvejų papildo ar dalinai dengia vienas kitą, todėl projektų vadovui gali būti sudėtinga

nuspręsti, kurį testavimo metodą (automatinį ar rankinį) yra geriau naudoti, nes smulkesnius

testavimo metodus pasirenka patys testuotojai. Testuotojų komanda gali tik patarti projektų

vadovui ar apsimoka kurti ar pirkti konkretų automatizuotą testavimo įrankį, ar uţtenka rankinio

ištestavimo, nes uţ patį projektą atsakingas lieka vadovas. Jis ţino, kiek galima ar ne išleisti

papildomų pinigų ir skirti papildomų resursų testavimui, nes įvertina ir kitus vykdomo projekto

etapus bei jiems atlikti reikalingas sąnaudas.

Siūlomas sprendimas galėtų padėti projektų vadovui lengviau pasirinkti ir atsakingiau

įvertinti, kurį testavimo metodą (automatinį ar rankinį) geriau naudoti vieno ar kito testavimo

atveju. Ypač šis sprendimas yra aktualus, jeigu automatizuojančią priemonę reikia kurti,

koreguoti ar pirkti. Jeigu organizacija jau turi ją iš ankščiau, tai nesudaro papildomų rūpesčių

ją sėkmingai adaptuoti ir naudoti, kaip papildomą priemonę klaidų aptikimui, tačiau ir tokiu

atveju testavimo metodo parinkimas turi būti vertinamas, nes priemonės adaptavimas tam

tikram testavimo atvejui taip pat gali pareikalauti papildomų kaštų bei resursų.

Kuriamas metodas remiasi dirbtinio intelekto pritaikymu siekiant nustatyti, ar konkrečiu

atveju yra geriau naudoti automatinį, rankinį ar abu testavimo metodus. Tokiam metodui

pirmiausiai reikia apmokyti sistemą, kad būtų galima gauti norimus rezultatus. 14 pav.

pavaizduotas sistemos apmokymo procesas:

1. Parenkamas tam tikras skaičius kodo fragmentų ir jiems sukuriami automatiniai

testai.

2. Nustatomi testų įvertinimo kriterijai.

3. Įvertinami visi turimi testai ir kaupiami gauti duomenys sistemos apmokymui.

4. Atliekamas parinkimo įrankio (sistemos) apmokymas.

30

Sistemos apmokymui pasirinkta naudoti dirbtinį neuroninį tinklą. Testavimo metodui

apmokyti ANN pasirinktas remiantis analizės gautomis išvadomis, kad jis yra geresnis

klasifikatorius nuolat vertinant išėjimus nei IFN. Ypač, kai mokomų įrašų yra maţai.

14 pav. Sistemos apmokymas

Kai turimas apmokytas įrankis (sistema) galima gauti įvertinimą svarbų nagrinėjamai

problemai išspręsti, kurį testavimo metodą (automatinį ar rankinį) geriau naudoti. Kuriamo

metodo principinė schema pateikta 15 pav., pateikus apmokytai sistemai naujo kodo fragmento

duomenis (ciklų, kodo eilučių kiekį) bei kitą reikalingą informaciją detalizuotą 13 lentelėje,

sistema įvertinus naują duomenų rinkinį pateikia rekomendaciją apie automatinio testo kūrimo

poreikį.

15 pav. Kuriamo metodo principinė schema

2.8. Analizės išvados

1. Testavimo metodų analizė parodė, kad egzistuoja testavimo tipo parinkimo problema

tarp automatinių ir rankinių testų.

31

2. Dirbtinio intelekto metodų analizės metu buvo išnagrinėta dirbtinis neuroninis tinklas,

miglotos informacijos tinklas, genetiniai algoritmai, spiečiaus intelektas (skruzdţių

kolonijos ir dalelių spiečiaus optimizavimo algoritmai).

3. Orakulo nustatymo analizė parodė, kad dirbtiniai neuroniniai ir miglotos informacijos

tinklai tinka intelektualiam testavimui vykdyti. Kai mokomųjų įrašų skaičius yra maţas,

geresnis nuolat vertinamų išėjimų klasifikatorius yra dirbtinis neuroninis tinklas.

4. Genetinių algoritmų analizės metu nustatyta, kad jie yra greitesni uţ dalelių spiečiaus

intelektą ir tinka sistemoms, kuriose nėra staigių pokyčių, nes atmetinėjami neteikiantys

vilčių sprendimai.

5. Dalelių spiečiaus intelekto analizė parodė, kad jis pasiţymi tvirtumu ir lankstumu

besikeičiančioms sistemoms, kuriose iš esmės gali pasikeisti situacija.

6. Įvertinus problemos aktualumą, nutarta kurti metodą, kuris padėtų projektų vadovui

nuspręsti, ar reikalingi automatiniai testai.

7. Įvertinus dirbtinio intelekto metodus ir sprendţiamą problemą, nutarta metode pritaikyti

dirbtinį neuroninį tinklą.

3. Metodo reikalavimų specifikacija ir analizė

3.1. Taikymo sritis, sąlygos ir prielaidos

Įvertinant gautus testavimo metodų analizės rezultatus, kuriamo metodo taikymo sritis

parenkama iš sprendţiamos problemos srities. Kuriamas metodas yra orientuotas į projektų

vadovus ir testuotojus, bet juo naudotis gali ir kiti suinteresuoti asmenys, kurie domisi

informacinių sistemų testavimu. Kai nėra ţinoma, kokį testavimo būdą (automatinį ar rankinį)

yra geriau naudoti į pagalbą galima pasitelkti dirbtiniais neuroniniais tinklais paremtą testavimo

tipo parinkimo metodą.

Metodo pateikiamus rezultatus reikia vertinti kaip rekomendacinio, patariamojo pobūdţio,

kadangi tikslumas priklauso nuo to, kokiais duomenimis vartotojai apmokė metodą. Dėl šios

prieţasties metodas tinkamesnis toms įmonėms ar vartotojams, kurie jau turi vykdytų projektų

ir minėtiems projektams atliktas testavimas. Tokiu būdu įmonė gali parengti metodo taikymą

(dirbtinio neuroninio tinklo apmokymą) remiantis įgyta praktika, nes ţino, kokiais atvejais

automatinių ar rankinių testų naudojimas jai buvo pasiteisinęs ir nepasiteisinęs. Jeigu įmonė

neturi testavimo praktikos, gali naudoti jau parengtą metodą. Šiuo atveju reikalingas teikiančios

įmonės ar kito subjekto leidimas naudoti parengtą metodą pagal jų duomenis.

32

3.2. Funkciniai reikalavimai

Detalizuojant 2.7 poskyryje pateiktą metodo idėją sudaryti panaudojimo atvejai (16 pav.),

kuriuos turi apimti kuriamas metodas. Panaudojimo atvejų specifikacijos pateiktos 2 – 8

lentelėse ir 17 – 19 paveikslėliuose.

16 pav. Metodo panaudojimo atvejų diagrama

2 lentelė. Panaudojimo atvejo „Įvertinti automatinių testų poreikį“ specifikacija

1 PA „Įvertinti automatinių testų poreikį―

Aprašymas. Tai pagrindinis metodo naudojimosi panaudojimo atvejis. Vartotojas suţino metodo

siūlymą dėl automatinių testų naudojimo.

Prieš sąlyga Išrinktos aktualaus kodo fragmento įvertinimų vertės (ANN

tinklo įėjimai skaitiniame pavidale).

Aktorius Metodo vartotojas

Sužadinimo sąlyga Atsiradęs poreikis suţinoti, ar

 būtų verta naudoti automatinius testus.

Susiję

panaudojimo

atvejai

Išplečia PA -

Apima PA -

Specializuoja PA -

Pagrindinis įvykių srautas Sistemos reakcija ir sprendimai

1. Vartotojas paprašo pateikti kriterijų

įvedimo langą.

1.1 Sistema pateikia kriterijų įvedimo langą.

2. Vartotojas suveda duomenis ir

patvirtina.
2.1 Sistema įvertina pateiktus duomenis ir pateikia atsakymą

vartotojui.

3. Baigiamas PA

Po sąlyga: Sistema pateikė atsakymą vartotojui.

Alternatyvūs scenarijai

A1. Nėra apmokyta

 įvertinimų sistema.

Vykdomas PA „Apmokyti įvertinimų sistemą―.

33

17 pav. PA „Įvertinti automatinių testų poreikį“ sekų diagrama

3 lentelė. Panaudojimo atvejo „Apmokyti įvertinimų sistemą“ specifikacija

2 PA „Apmokyti įvertinimų sistemą―

Aprašymas. Tai pagrindinis metodo apmokymo panaudojimo atvejis. Šis PA išplečia automatinių testų

poreikio įvertinimą ir apima kodo fragmento parinkimą, automatinių testų sukūrimą, įvertinimo kriterijų

nustatymą.

Prieš sąlyga Įvertinimų sistema nėra apmokyta, parengta.

Aktorius Metodo vartotojas

Sužadinimo sąlyga Atsiradęs poreikis suţinoti, ar būtų verta naudoti automatinius

testus, bet neturima apmokytos sistemos.

Susiję

panaudojimo

atvejai

Išplečia PA Įvertinti automatinių testų poreikį

Apima PA Parinkti kodo fragmentus, atrinkti automatinius testus,

nustatyti įvertinimo kriterijus.

Specializuoja PA -

Pagrindinis įvykių srautas Sistemos reakcija ir sprendimai

1. Vartotojui reikia parinkti kodo

fragmentus.

1.1 Vykdomas PA „Parinkti kodo fragmentus―.

2. Vartotojui reikia atrinkti rankinius,

automatinius testus.
2.1 Vykdomas PA „Atrinkti rankinius, automatinius testus―.

3. Vartotojui reikia nustatyti įvertinimo

kriterijus.

3.1 Vykdomas PA „Nustatyti įvertinimo kriterijus―.

4. Vartotojas įgalina

apmokymą.

metodo 4.1 Sistema vykdo apmokymą.

5. Baigiamas PA

Po sąlyga: Apmokyta įvertinimų sistema (įrankis).

Alternatyvūs scenarijai

-

34

18 pav. PA „Apmokyti įvertinimų sistemą“ sekų diagrama

4 lentelė. Panaudojimo atvejo „Parinkti kodo fragmentus“ specifikacija

3 PA „Parinkti kodo fragmentus―

Aprašymas. Šis PA skirtas išrinkti programinio kodo fragmentus tinkamus, norimus naudoti metodo

apmokymui ir yra PA „Apmokyti įvertinimų sistemą― dalis.

Prieš sąlyga Įvertinimų sistema nėra apmokyta, parengta;

 kodo fragmentai neatrinkti.

Aktorius Metodo vartotojas

Sužadinimo sąlyga Atsiradęs poreikis parinkti kodo fragmentus metodo

apmokymui.

Susiję

panaudojimo

atvejai

Išplečia PA -

Apima PA -

Specializuoja PA -

Pagrindinis įvykių srautas Sistemos reakcija ir sprendimai

1. Vartotojas susiranda turimus kodo

fragmentus.

2. Vartotojas išrenka reikalingiausius

kodo fragmentus.

3. Baigiamas PA

Po sąlyga: Kodo fragmentai yra parinkti.

Alternatyvūs scenarijai

A1. Pakankamai ar visai nėra kodo

fragmentų.

Vykdomas PA „Sukurti kodo fragmentus―

5 lentelė. Panaudojimo atvejo „Atrinkti rankinius, automatinius testus“ specifikacija

4 PA „Atrinkti automatinius testus―

Aprašymas. Šis PA skirtas atrinkti esančius sukurtus rankinius, automatinius testus išrinktiems kodo

fragmentams ir yra PA „Apmokyti įvertinimų sistemą― dalis.

Prieš sąlyga Įvertinimų sistema nėra apmokyta, parengta; rankiniai,

 automatiniai testai neatrinkti.

Aktorius Metodo vartotojas

35

Sužadinimo sąlyga Atsiradęs poreikis išrinkti sukurtus rankinius, automatinius

testus parinktiems kodo fragmentams.

Susiję

panaudojimo

atvejai

Išplečia PA -

Apima PA -

Specializuoja PA -

Pagrindinis įvykių srautas Sistemos reakcija ir sprendimai

1. Vartotojas susiranda turimus

rankinius, automatinius testus.

2. Vartotojas išrenka testus susijusius su

parinktais kodo fragmentais.

3. Baigiamas PA

Po sąlyga: Rankiniai ir automatiniai testai yra atrinkti.

Alternatyvūs scenarijai

A1. Pakankamai ar visai nėra

automatinių testų.
Vykdomas PA „Sukurti automatinius testus―.

6 lentelė. Panaudojimo atvejo „Nustatyti įvertinimo kriterijus“ specifikacija

5 PA „Nustatyti įvertinimo kriterijus―

Aprašymas. Šis PA skirtas nustatyti įvertinimo kriterijų reikšmes parinktiems kodo fragmentams su

jiems pritaikytais testais ir yra PA „Apmokyti įvertinimų sistemą― dalis.

Prieš sąlyga Įvertinimų sistema nėra apmokyta, parengta; įvertinimo

kriterijų reikšmės nenustatytos.

Aktorius Metodo vartotojas

Sužadinimo sąlyga Atsiradęs poreikis nustatyti įvertinimo kriterijų reikšmes.

Susiję

panaudojimo

atvejai

Išplečia PA -

Apima PA -

Specializuoja PA -

Pagrindinis įvykių srautas Sistemos reakcija ir sprendimai

1. Vartotojas įvertina kriterijų reikšmes

skaitine išraiška.

2. Vartotojas suveda nustatytus

kriterijus ir patvirtina.

2.1 Sistema išsaugo kriterijų reikšmes.

3. Baigiamas PA

Po sąlyga: Parengti duomenys sistemos (įrankio) apmokymui.

Alternatyvūs scenarijai

-

36

19 pav. PA „Nustatyti įvertinimo kriterijus“ sekų diagrama

7 lentelė. Panaudojimo atvejo „Sukurti kodo fragmentus“ specifikacija

6 PA „Sukurti kodo fragmentus―

Aprašymas. Šis PA skirtas parengti kodo fragmentus, kurie bus testuojami ir naudojami metodo

apmokymui. Taip pat išplečia kodo fragmentų parinkimą.

Prieš sąlyga Įvertinimų sistema nėra apmokyta, parengta; nėra jokių

galimų testuoti kodo fragmentų.

Aktorius Programuotojas

Sužadinimo sąlyga Atsiradęs poreikis sukurti kodo fragmentus.

Susiję

panaudojimo

atvejai

Išplečia PA Parinkti kodo fragmentus

Apima PA -

Specializuoja PA -

Pagrindinis įvykių srautas Sistemos reakcija ir sprendimai

1. Vartotojas sukuria prasminį programinį

kodą.

2. Vartotojas kodą suskirto į fragmentus.

3. Baigiamas PA

Po sąlyga: Kodo fragmentai sukurti.

Alternatyvūs scenarijai

-

8 lentelė. Panaudojimo atvejo „Sukurti automatinius testus“ specifikacija

7 PA „Sukurti automatinius testus―

Aprašymas. Šis PA skirtas sukurti automatinius testus ruošiant duomenis metodo apmokymui. Taip pat

išplečia rankinių, automatinių testų atrinkimą.

Prieš sąlyga Įvertinimų sistema nėra apmokyta, parengta; nėra

reikalingų automatinių testų.

Aktorius Testuotojas

Sužadinimo sąlyga Atsiradęs poreikis sukurti automatinius testus tam

tikriems kodo fragmentams.

Susiję

panaudojimo

atvejai

Išplečia PA Atrinkti rankinius, automatinius testus

Apima PA -

Specializuoja PA -

Pagrindinis įvykių srautas Sistemos reakcija ir sprendimai

1. Vartotojas išanalizuoja testo poreikio

prasmę.

2. Vartotojas sukuria automatinius testus.

3. Baigiamas PA

Po sąlyga: Automatiniai testai sukurti.

Alternatyvūs scenarijai

-

3.3. Nefunkciniai reikalavimai

Nefunkciniai reikalavimui metodui (sistemai) išskirti remiantis ISO 9126 standartu ir

pateikiami 9 – 11 lentelėse.

9 lentelė. Funkcionalumo reikalavimai

Funkcionalumo reikalavimai

37

1.1 Naudojimo tikslumas

Numeris: 1

Panaudojimo atvejai: 1

Pagrindimas: Reikalinga tam, kad būtų prasminis

 metodo naudojimas.

Tinkamumo kriterijus: Iš atliekamų bandymų 80% atvejų pirmas bandymas

 turi būti teisingas.

Užsakovo patenkinimas: 5

Užsakovo

nepatenkinimas:

4

Priklausomybės: Nėra

Konfliktai: Nėra

 10 lentelė. Efektyvumo reikalavimai

Efektyvumo reikalavimai

4.1 Laiko ir išteklių paskirstymas

Numeris: 2

Panaudojimo atvejai: 1

Pagrindimas: Reikalingas tam, kad būtų siekiama sumaţinti testavimo

sąnaudas ar palengvinti parinkimą.

Tinkamumo kriterijus: Metodo naudojimas turi sumaţinti laiko ir išteklių

naudojimą nei kad buvo prieš pradedant jį naudoti.

Užsakovo patenkinimas: 5

Užsakovo

nepatenkinimas:

4

Priklausomybės: Nėra

Konfliktai: Nėra

11 lentelė. Palaikomumo reikalavimai

Palaikomumo reikalavimai

5.1 Keitimo galimybės

Numeris: 3

Panaudojimo atvejai: 1 – 5

Pagrindimas: Reikalingas tam, kad esant poreikiui įmonė galėtų

prisitaikyti pagal savo sukauptą testavimo būdų

parinkimo patirtį.

Tinkamumo kriterijus: Galima apmokyti tinklą su įmonėje sukauptais testavimo

parinkimo duomenimis.

Užsakovo patenkinimas: 5

Užsakovo

nepatenkinimas:

4

Priklausomybės: Nėra

Konfliktai: Nėra

5.2 Testavimo galimybės

38

Numeris: 4

Panaudojimo atvejai: 1 – 5

Pagrindimas: Reikalingas tam, kad esant poreikiui įmonė galėtų

pasitikrinti, kaip veikia sistema po apmokymo.

Tinkamumo kriterijus: Galima panaudoti sukauptus papildomus duomenis

įsitikinti, kokiu tikslumu veikia prognozavimas.

Užsakovo patenkinimas: 5

Užsakovo

nepatenkinimas:

4

Priklausomybės: Tiesiogiai priklauso nuo keitimo reikalavime apmokymui

naudotų įmonės duomenų.

Konfliktai: Nėra

3.4. Dalykinės srities modelis

Apibendrinant panaudojimo atvejų ir veiklos diagramas sudarytas dalykinės srities esybių

modelis aprašantis metodo apmokymo ir naudojimo duomenis (20 pav.). Detalus įėjimo

duomenų aprašymas pateiktas 13 lentelėje. Kiekvienas eksperimentas gali būti sudarytas iš

vieno ir daugiau apmokymui skirtų duomenų ir rezultatų. Apmokymui pateiktų duomenų ir

rezultatų skaičius turi būti vienodas, nes kiekviena duomenų aibė turi turėti jai priklausantį

atsakymą. Naudojimo atveju, eksperimentas turės vieną duomenų rinkinį, kuriam bus metodo

(sistemos) pateikiamas prognozuojantis atsakymas dėl automatizavimo poreikio.

Kiekvienam duomenų rinkiniui yra bent po vieną svorių rinkinį (atitinkamai įėjimo reikšmei

yra po vieną svorio reikšmę). Vykdant apmokymą tam pačiam duomenų rinkiniui, gali būti keli

skirtingi svorių rinkiniai, nes keičiant įėjimo duomenų svorių reikšmes siekiama priartėti prie

norimo rezultato. Naudojimo metu duomenų rinkinys turi naujausią svorių rinkinį (su šiais

svoriais apmokymo metu gaunamas tiksliausias pageidautas rezultatas).

20 pav. Dalykinės srities esybių klasių diagrama

39

3.5. Reikalavimų analizės apibendrinimas

Reikalavimų analizės metu konkretizuota metodo taikymo sritis, detalizuoti funkciniai

reikalavimai, išskirti nefunkciniai reikalavimai ir nustatytas dalykinės srities modelis.

Pagrindinė metodo funkcija yra įvertinti automatinių testų poreikį, bet ji negali būti vykdoma,

jeigu prieš tai nėra apmokyta sistema, kurios apmokymui naudojamas dirbtinis neuroninis

tinklas. Siekiant metodo naudojimo pagrįstumo iškeltas nefunkcinis gaunamų rezultatų

tikslumo reikalavimas. Metodo (sistemos) dalykinės srities modelis apima metodo naudojimą

ir apmokymui skirtų duomenų saugojimą.

4. Metodo aprašas

4.1. Metodo taikymas

Bendras metodo taikymo vaizdas yra pateiktas dar 2.7 poskyryje 14 paveikslėlyje yra

bendra apmokymo schema, o 15 pav. – apmokytos sistemos (metodo) taikymas. Siekiant

aiškesnio metodo taikymo suvokimo yra sudaryta 21 pav. veiklos diagrama detalizuojanti

metodo panaudojimą. Detalizuotoje metodo taikymo veiklos diagramoje apţvelgiami veiksmai

nuo metodo taikymo pradţios iki pateiktų rezultatų padedančių metodo vartotojui priimti

sprendimą dėl automatinių testų poreikio. Įvertinama situacija, kai metodo naudotojai turi arba

neturi apmokytą sistemą, pateikiama detalesnių veiksmų seka norint pritaikyti ar naudotis

metodu.

40

21 pav. Detalizuota metodo taikymo veiklos diagrama

4.2. Metodo realizavimo programinė įranga

Įvertinant veiklos analizės dalyje pasiūlytą testavimo tipo parinkimo metodo idėją

nuspręsta metodo veikimo demonstraciją ir eksperimentus atlikti naudojant MathWorks

kompanijos sukurtą Matlab produktą (7.8.0 versiją). Matlab savo galimybes praplečia

naudojant įvairių sričių priemonių komplektus (angl. toolbox). Testavimo tipo parinkimo

metodas yra paremtas dirbtiniais neuroniniais tinklais, todėl iš daugybės įvairių priemonių

komplektų, sprendţiamai situacijai aktualus yra Neural Network Toolbox (6.0 versija; toliau –

priemonių komplektas).

Priemonių komplektas leidţia projektuoti, vykdyti, įsivaizduoti ir imituoti neuroninius

tinklus [28]. Patikrinant galimybes įsitikinta, kad galima tiek keisti, tiek susidaryti

41

pageidaujamą tinklo struktūrą (nustatyti apmokymo tipą, funkciją, sluoksnių skaičių, neuronų

kiekį). Galimybė keisti įvairius parametrus ypač svarbi, nes vykdant įvairius eksperimentus

apmokant neuroninį tinklą, galima stebėti, kaip koks parametras įtakoja metodo veikimą. Dėl

metodui reikalingų ir esamų funkcijų Neural Network Toolbox įrankyje pasirinkta naudoti

Matlab taikomąją programą.

4.3. Metodo naudojamų duomenų modelis

Iš dalykinės srities modelio (20 pav.) sudarytas siūlomas duomenų modelis. 22 pav.

pateikiama duomenų bazės struktūra yra vienas iš galimų variantų, kaip galėtų būti saugomi

metodui reikalingi duomenys.

22 pav. Siūlomas metodo duomenų modelis

12 lentelė. Duomenų bazės lentelių aprašas

Atributas Tipas Paskirtis

 Eksperimentas

eksp_id int(10) Pirminis raktas. Eksperimento identifikatorius.

Pavadinimas char(20) Eksperimento pavadinimas, turintis prasminę

reikšmę.

Data datetime Eksperimento vykdymo data ir laikas.

Apmokymo_tipas int(1) Nurodoma apmokymo tipas: su priţiūrėtoju (1); be

priţiūrėtojo (2).

Sluoksniu_sk int(3) Neuroninio tinklo paslėptų sluoksnių skaičius

eksperimento vykdymo metu.

Funkcija char(20) Neuroniniam tinkle naudojama funkcija.

Eksp_tipas int(1) Nurodomas eksperimento tipas: apmokymo (1);

prognozavimo, naudojimo (2).

42

naudojimo_tipas int(1) Nurodomas naudojimo tipas: apmokymo (1);

prognozavimo, naudojimo (2).

 Rezultatas

rez_id int(10) Pirminis raktas. Rezultato identifikatorius.

Atsakymas int(3) Tam tikro duomenų rinkinio atsakymas: rankinis (-

1); nesvarbu (0); automatinis (1)

Iteracija int(10) Skaičius nurodantis, kurios iteracijos metu gautas

atsakymas, jei naudojama apmokymo duomenis

– tai iteracijos reikšmė lygi nuliui.

eksp_id int(10) Išorinis raktas. Eksperimento identifikatorius.

 Iejimo_duomenys

duom_id int(10) Pirminis raktas. Įėjimo duomenų identifikatorius.

panaud_sk int(10) Paaiškinimas 13 lentelė. 1 eil. nr.

ciklu_sk int(10) Paaiškinimas 13 lentelė. 2 eil. nr.

testuotojo_patirtis double Paaiškinimas 13 lentelė. 3 eil. nr.

proj_kom_sk int(10) Paaiškinimas 13 lentelė. 4 eil. nr.

proj_uzduociu_sk int(10) Paaiškinimas 13 lentelė. 5 eil. nr.

patirtis_auto double Paaiškinimas 13 lentelė. 6 eil. nr.

kurimo_laikas int(10) Paaiškinimas 13 lentelė. 7 eil. nr.

test_laikas double Paaiškinimas 13 lentelė. 8 eil. nr.

eiluciu_sk double Paaiškinimas 13 lentelė. 9 eil. nr.

testuotojo_ikainis int(7) Paaiškinimas 13 lentelė. 10 eil. nr.

rank_kom_sk double Paaiškinimas 13 lentelė. 11 eil. nr.

auto_kom_sk double Paaiškinimas 13 lentelė. 12 eil. nr.

kom_sudetis double Paaiškinimas 13 lentelė. 13 eil. nr.

test_lesos double Paaiškinimas 13 lentelė. 14 eil. nr.

irankio_kaina double Paaiškinimas 13 lentelė. 15 eil. nr.

auto_laikas int(10) Paaiškinimas 13 lentelė. 16 eil. nr.

versijos int(3) Paaiškinimas 13 lentelė. 17 eil. nr.

eksp_id int(10) Išorinis raktas. Eksperimento identifikatorius.

 Svoriai

svoriai_id int(10) Pirminis raktas. Svorių identifikatorius.

sv_panaud_sk double Pakartotinio testo panaudojimo svoris.

sv_ciklu_sk double Kode esančių ciklų svoris.

sv_testuotojo_patirtis double Testuotojo patirties svoris.

sv_proj_kom_sk double Projekto komandos svoris.

Atributas Tipas Paskirtis

sv_proj_uzduociu_sk double Projekto uţduočių svoris

sv_patirtis_auto double Testavimo komandos (testuotojo) patirties

automatizavime svoris.

sv_kurimo_laikas double Projekto kūrimo laiko svoris.

sv_test_laikas double Testavimui skirto laiko svoris.

sv_eiluciu_sk double Kodo eilučių svoris.

sv_testuotojo_ikainis double Testuotojo įkainio svoris.

43

sv_rank_kom_sk double Rankinio testavimo komandos svoris

sv_auto_kom_sk double Automatinio testavimo komandos svoris.

sv_kom_sudetis double Testavimo komandos sudėties svoris.

sv_test_lesos double Testavimui skirtų lėšų svoris.

sv_irankio_kaina double Testavimo įrankio kainos svoris.

sv_auto_laikas double Laiko reikalingo sukurti automatinį testą svoris.

sv_versijos double Numatomų projekto versijų iki uţbaigimo svoris.

44

13 lentelė. Dirbtinių neuroninių tinklų įėjimai-kriterijai

Eil.

nr.

Kriterijaus

pavadinimas Paskirtis Išraiška, formulė Interpretacija Reikšmių sritis
Matavimo

vienetai

1 Pakartotinis testo

panaudojimo sk.

Nustatyti, kiek kartų

naudojamas

konkretus testas

X = A

A = konkretaus testo

naudojimo skaičius

Kuo didesnė A reikšmė, tuo

didesnis automatinio testo

poreikis

0<=A

A reikšmėmis gali

būti nulis ir sveikųjų

teigiamų skaičių aibė

vnt.

2 Kode esančių ciklų sk. Įvertinti pastangas

reikalingas ciklų

patikrinimui

X = A

A = konkretaus

testuojamo kodo

bendras ciklų skaičius

Kuo didesnė A reikšmė, tuo

didesnis automatinio testo

poreikis

0<=A

A reikšmėmis gali

būti nulis ir sveikųjų

teigiamų skaičių aibė

vnt.

3 Testuotojo patirtis Įvertinti testuotojo

patirtį, kad nustatyti,

ar pakanka ţinių

pradėti kurti

automatinius testus

X = A

A = testuotojo patirtis

dirbant testavimo

srityje

Kuo didesnė A reikšmė, tuo

brandesni susiformavę

testavimo įgūdţiai. Esant

poreikiui galima pereiti į

automatinių testų sritį.

0<=A

A reikšmėmis gali

būti nulis ir teigiamų

skaičių aibė

metai

4 Projekto komandos

sk.

Įvertinti projekto

komandos narių

skaičių, kad nustatyti

testavimo poreikio

daţnumą ir projekto

dydį.

 X = A A =

projekto

komandos

narių skaičius.

 Kuo didesnė A reikšmė, tuo

daţniau gali tekti testuoti

tuos pačius komponentus;

didesnis vykdomas

projektas.

1<=A

A reikšmėmis gali

būti teigiamų

sveikųjų skaičių aibė

nuo 1

 vnt.

5 Projekto uţduočių

kiekis

Įvertinti projektui

atlikti reikalingų

uţduočių kiekį

X = A A = projektui

įgyvendinti

reikalingas uţduočių

kiekis.

Kuo didesnė A reikšmė, tuo

didesnis gali būti vykdomas

projektas ir reikalingas

didesnis testų stebėjimas.

1<=A

A reikšmėmis gali

būti teigiamų

sveikųjų skaičių aibė

nuo 1

vnt.

45

6 Testavimo komandos

(testuotojo) patirtis

automatizavime

Įvertinti komandos

(testuotojo) patirtį,

kad nustatyti, ar

pakanka ţinių kurti

automatinius testus

X = A

A = testuotojo

(komandos) patirtis

dirbant automatinio

testavimo srityje

Kuo didesnė A reikšmė, tuo

didesnė įgyta patirtis ir

įgūdţiai. Tikslingiau kuriami

automatiniai testai

0<=A

A reikšmėmis gali

būti nulis ir teigiamų

skaičių aibė

metai

7 Projekto kūrimo

laikas

Įvertinti, kaip

sugebės automatiniai

testai atsipirkti

X = A

A = numatytas

projektui kurti laikas

Kuo didesnė A reikšmė, tuo

daugiau gali atsipirkti

automatinis testas

0<=A

A reikšmėmis gali

būti nulis ir teigiamų

skaičių aibė

mėnesiai

8 Testavimui skirtas

laikas

Nustatyti iki kurio

laiko turi atsipirkti

automatinis testas

X = A A =

konkretus

testavimui skirtas

laikas

Kuo didesnė A reikšmė, tuo

daugiau gali atsipirkti

automatinis testas

0<=A

A reikšmėmis gali

būti nulis ir teigiamų

skaičių aibė

mėnesiai

9 Funkciniai taškai arba

kodo eilučių sk.

Įvertinti, kokią dalį

apima testuojama

sritis

X = A

A = testuojamos

srities funkcinių taškų

arba tūkstančių kodo

eilučių skaičius

Kuo didesnė A reikšmė, tuo

sudėtingiau ištestuoti vien

tik rankiniu ar automatiniu

būdu, todėl didėjant A

reikšmei didėja abiejų

testavimo tipų poreikis

0<=A

A reikšmėmis gali

būti nulis ir teigiamų

skaičių aibė

vnt.

10 Testuotojo įkainis Reikalinga ţinoti

vykdant testavimą,

kad neviršyti

testavimui skirtų lėšų

X = A

A = testuotojo darbo

įkainis

Jei A reikšmė 0, tai

testuotojas gali būti

praktikantas. Kuo didesnė A

reikšmė, tuo svarbiau

tinkamai nukreipti testuotojo

darbą, pvz., skirti

automatinių testų sudarymą

0<=A

A reikšmėmis gali

būti nulis ir teigiamų

skaičių aibė

Lt per

valandas,

mėnesius

46

11 Testavimo komandos

sk. (rankinio

testavimo)

Įvertinti galimybes

kurti automatinius

testus

X = A A = rankinio

testavimo testuotojų

skaičius

Kuo A reikšmė didesnė, tuo

įvairesnį galima atlikti

testavimą ir paskirti kelis

geriausius testuotojus

kvalifikuotis automatinių

testų kūrime

0<=A

A reikšmėmis gali

būti nulis ir sveikųjų

teigiamų skaičių aibė

vnt.

12 Testavimo komandos

sk. (automatinio

testavimo)

Įvertinti galimybes

kurti automatinius

testus

X = A

A = automatinio

testavimo testuotojų

skaičius

Kuo A reikšmė didesnė, tuo

daugiau resursų turima kurti

automatinius testus

0<=A

A reikšmėmis gali

būti nulis ir sveikųjų

teigiamų skaičių aibė

vnt.

13 Testavimo komandos

sudėtis

Įvertinti testavimo

komandos sudėtį

X = A/B A =

automatinio

testavimo testuotojų

skaičius

B = bendras testuotojų

skaičius

0<=X<=1

Kuo X reikšmė artimesnė 1,

tuo daugiau turima

automatinių testuotojų

0<=A, 0<=B,

0<=X<=1

A ir B reikšmėmis

gali būti nulis ir

teigiamų skaičių

aibė.

X reikšmės gali būti

nuo 0 iki 1.

santykinė

išraiška

14 Testavimui skirtos

lėšos

Įvertinti testavimui

skirtų lėšų ribas

X = A

A = testavimui skirtų

pinigų suma

Kuo A reikšmė didesnė, tuo

daugiau testuotojo darbo

valandų galima skirti

testavimui

0<=A

A reikšmėmis gali

būti nulis ir teigiamų

skaičių aibė

litai

15 Testavimo įrankio

kaina

Įvertinti reikalingas

išlaidas įsigyti

tinkamam testavimo

įrankiui

X = A

A = testavimo įrankio

pirkimo kaina

Kuo A reikšmė maţesnė, tuo

greičiau atsipirks investicija

ir pirkimas patrauklesnis uţ

kūrimąsi. Jei A = 0, tai

testavimo įrankis nėra

perkamas

0<=A

A reikšmėmis gali

būti nulis ir teigiamų

skaičių aibė

litai

47

16 Laikas reikalingos

sukurti automatinį

testą

Įvertinti, kiek laiko

reikia sukurti

konkrečiam

automatiniam testui

X = A

A = automatinio testo

sukūrimo laikas

Kuo A reikšmė maţesnė, tuo

patraukliau, nes likusį

laiką galima skirti kitiems

darbams

0<=A

A reikšmėmis gali

būti nulis ir teigiamų

skaičių aibė

valandos

17 Numatomas projekto

versijų skaičius iki

projekto uţbaigimo

Papildomai įvertinti

testų pakartotinio

panaudojimo

galimybę

X = A

A = numatytas versijų

skaičius iki uţbaigimo

dienos

Kuo A reikšmė didesnė, tuo

svarbesnis automatinių testų

sukūrimas

1<=A

A reikšmėmis gali

būti teigiamų

sveikųjų skaičių aibė

nuo 1

vnt.

48

4.4. Metodo dirbtinio neuroninio tinklo struktūra

Parengus detalų reikalingų metodo sprendimui gauti kriterijų sąrašą gaunamas dirbtinio

neuroninio tinklo įėjimo sluoksnio elementų skaičius. Įėjimų sluoksnį sudaro 17 skirtingų

įėjimo duomenų (13 lentelė) iš kurių gaunamas vienas sprendimo rezultatas. ANN išėjimas gali

būti trijų tipų: rankinis testavimas; automatinis testavimas; abu pasirinkimai yra adekvatūs.

Metodas pateikia vieną sprendimą iš trijų galimų ir ANN išėjimas sudarytas iš trijų neuronų (23

pav.). Paslėptų sluoksnių ir neuronų kiekis juose nustatomas bandymų metu.

Taip pat vykdant eksperimentus nustatomi ir kiti neuroninių tinklų parametrai kaip, pavyzdţiui,

apmokymo algoritmas, aktyvavimo funkcija.

23 pav. Metodo dirbtinio neuroninio tinklo struktūra

4.5. Pateikto formalaus aprašo pagrindimas

4.5.1. Neuroninio tinklo apmokymas

Norint apskaičiuoti neuroninio tinklo išėjimą, reikia turėti tinklo įėjimo reikšmes,

neuronų svorius, kurie iš pradţių priskiriami atsitiktine tvarka, bei ţinoti tikslo reikšmes, kokias

norime, kad neuroninis tinklas išmoktų.

Iš pradţių kiekvienam neuronui vykdomas svorių sumų priskyrimas pagal (10) formulę,

po to gauta svorių suma pateikiama perdavimo funkcijai (11) formulėje. Tokiu būdu gaunama

konkretaus neurono išeiga. Tarp skirtingų sluoksnių vienų neuronų išeigos tampa kitų neuronų

įeigomis.

Turint neuroninio tinklo išėjimus ir tęsiant apmokymo procedūrą yra atliekamas svorių

paslėptuose ir išėjimo sluoksniuose perskaičiavimas. Naujus svorius skaičiuoti patartina nuo

išėjimo sluoksnio, nes paslėpto sluoksnio svorių skaičiavime yra naudojamos išėjimo sluoksnio

neuronų paklaidos. Naujas svoris apskaičiuojamas pagal (16) formulę, į kurią įstatoma

atnaujinimo svorio pokyčio (15) ir po to neurono paklaidos (14) formulės. Paslėpto sluoksnio

nauji svoriai gaunami pritaikant minėtą (16) formulę, tik į ją įstatant (13) ir po to

(12) formules.

49

4.5.2. Neuroninio tinklo naudojamos formulės

Svorių priskyrimo formulė [30] (svorių suma pasiekianti neuroną iš i-tojo įėjimo į j-ąjį):

 n j wji xi (10)

kur n j - j-tasis neuronas, kuriam skaičiuojama svorių įtaka, d – įėjimų kiekis, wji - svoris iš i-tojo

įėjimo į j-ąjį, xi - įėjimo reikšmė. Pastaba: formulėje yra įtraukta w0 bias

reikšmė, kurios x01 .

Neurono išėjimo formavimo formulė:

 a jg(nj) (11)

kur a j - j-tojo neurono išėjimo reikšmė, n j - j-tojo neurono svorių suma gauta (10)

formulėje, g(...) - neuronų sluoksniui taikoma perdavimo funkcija, darbe yra naudojamos

hiperbolinio tangento ir tiesinė funkcijos [22] (24 pav. ir 25 pav.).

 24 pav. Hiperbolinis tangentas arba tansig 25 pav. Tiesinė funkcija arba purelin

Svorių perskaičiavimo formulės paslėptam ir išėjimo sluoksniui skaičiuojamos skirtingai:

 Paslėpto sluoksnio paklaidų skaičiavimas:

 (12)

j - paslėpto sluoksnio j-tojo neurono paklaida, a j - neurono

išėjimo

reikšmė gauta (11) formulėje, c – išėjimų kiekis kitame sluoksnyje, wji - svoris iš j-tojo

paslėpto sluoksnio neurono į i-tąjį kito sluoksnio neuroną, - išėjimo

j sluoksnio

j-tojo neurono paklaida gauta (14) formulėje (kai neuroninis tinklas sudarytas iš

dviejų ir daugiau paslėptų sluoksnių, naudojama - kitas neuronų

d

i 0

y

1 j a

c

i
y ji j j a j j w a a

1
) 1 (

kur a

50

sluoksnis, reikšmė gaunama iš (12) formulės).

 j xi (13)

kur wji - svorių pokytis tarp i-tojo ir j-tojo neuronų gretimuose sluoksniuose, -

ţingsnio dydis, - paslėpto sluoksnio j-tojo neurono paklaida

j

gauta (12) formulėje, xi - i-tojo įėjimo reikšmė (kai neuroninis tinklas sudarytas iš

dviejų ir daugiau paslėptų sluoksnių, naudojama ai kaip įėjimo reikšmės iš prieš tai

buvusio sluoksnio).

 Išėjimo sluoksnio paklaidų skaičiavimas:

 y j y j (1 y j)(t j y j) (14)

kur j - išėjimo sluoksnio j-tojo neurono paklaida, y j - išėjimo sluoksnio j-tojo

neurono gauta reikšmė pagal (11) formulę, t j - j-tojo neurono tikslo

reikšmė.

 j ai (15)

kur wji - svorių pokytis tarp i-tojo ir j-tojo neuronų tarp paslėpto ir išėjimo

sluoksnių, - ţingsnio dydis, - išėjimo sluoksnio j-tojo neurono paklaida
j

gauta (14) formulėje, ai - i-tojo įėjimo reikšmė iš paslėpto sluoksnio.

Naujo svorio reikšmės suradimo formulė:

 naujaswjisenaswji wji (16)

4.5.3. Neuroninio tinklo architektūra testavimo tipo parinkimo metodui

Atlikus ANN parametrų analizę (detaliau - 6 skyriuje) nustatytos ANN architektūros vaizdas

pateikiamas 26 pav.

a ji w

a

y

y ji w

y

51

26 pav. Neuroninio tinklo architektūra sprendimui realizuoti

5. Sprendimo realizacija

Siekiant išbandyti darbe pristatytą testavimo tipo parinkimo metodą, buvo sukurtas

programinis kodas skirtas įgyvendinti pasiūlyto metodo idėją (4 priedas). Realizacijai

panaudota Matlab taikomoji programa ir neuroninių tinklų priemonių komplektas. Norint

pasinaudoti neuroninių tinklų priemonių komplektu reikia būtinai turėti įsidiegus Matlab paketą

[31], [32]. Darbo metu naudotos versijos:

 MATLAB 7.8.0 (R2009a). Minimalūs diegimo reikalavimai: 700MB instaliacinis

failas, 4GB suinstaliuotas paketas, 512 RAM.

 Neural Networks Toolbox 6.0. Turi būti įdiegtas Matlab paketas.

Atsiţvelgus į neuroninio tinklo įgyvendinimą Maltab aplinkoje, jo struktūros fragmentas

pateikiamas 27 pav. Neuroninis tinklas ir jo formuojami rezultatai priklauso nuo jį sudarančios

tinklo struktūros, naudojamų tikslumo, apmokymo ir perdavimo funkcijų. Daugiasluoksnis

neuroninis tinklas maţiausiai gali turėti 3 jį sudarančius sluoksnius (įėjimo, paslėptą ir išėjimo).

Kiekvienas sluoksnis turi po kelis neuronus, kurių svarbą sprendimo priėmime nurodo svorio

reikšmė. Neuroniniam tinklui naudojamą duomenų aibę sudaro pasiūlyto testavimo tipo

parinkimo metodo kriterijai, kurie detaliau aprašyti 13 lentelėje.

52

27 pav. Naudojamo daugiasluoksnio neuroninio tinklo struktūra

Sukurto programinio kodo logika skirta tiek metodo pagrįstumo analizei, tiek metodo struktūros

išgryninimui, kurią sudaro:

1. Pradinių parametrų nustatymas;

2. Apmokymo duomenų ir svorių nuskaitymas;

3. Nustatymas kiek ir kokio tipo duomenų naudojama;

4. Daugiasluoksnio neuroninio tinklo sukūrimas;

5. Daugiasluoksnio neuroninio tinklo apmokymas;

6. Daugiasluoksnio neuroninio tinklo imitavimas;

7. Gautų neuroninio tinklo duomenų atvertimas į pradinį formatą;

8. Naujų duomenų aibės pateikimas apmokytam tinklui;

9. Galutinių rezultatų pateikimas, išsaugojimas.

Vykdant metodo tyrimus, bandymų pavadinimai išreiškiami specifiniu formatu. Perceptronų

tinklo eksperimentų numeris prasideda raide P, o daugiasluoksnio – raide M.

Pavyzdţiui, M1HL5N kodas šifruojasi tokiu principu:

 M daugiasluoksnis (angl. Multilayer).

 1 sluoksnių kiekis.

HL paslėptas sluoksnis (angl. Hidden Layer).

53

5 neuronų kiekis paslėptame sluoksnyje. N

 Neuronai (angl. Neuron).

Atliekant M2HL6-5N bandymą, naudojant traincgp apmokymo ir suminę kvadratinės

paklaidos tikslumo funkcijas, atsidarius programinį kodą reikia jį paleisti įvykdyti. Speciali

grafinė sąsaja nėra kurta, nes tai nėra tyrimo objektas. Po kodo įvykdymo Matlab paketo

komandų lange gauti rezultatai pateikiami 28 pav. Kita informacija perţiūrima per kintamuosius

(29 pav.).

28 pav. Papildomos informacijos išvedimo pavyzdys

Analizuojant pateiktus 28 pav. rezultatus, galima įvertinti kiek neuroninis tinklas

išmoksta duomenų iš apmokymui skirtos aibės, kiek kokių duomenų pateikta, kaip nuspėja

naujus pateiktus duomenis po tinklo apmokymo. Iš 29 pav. galima analizuoti duomenis

susijusius su neuroninio tinklo struktūra (pasiektas tikslumas, tikslumo reikšmės kiekvienoje

iteracijoje, apmokymo stabdymo prieţastis), įvertinti pateiktus tinklo išėjimus.

54

29 pav. Informacijos per kintamuosius peržiūra

6. Eksperimentinis tyrimas

6.1. Neuroninio tinklo parametrų analizė

Nustatinėjant ANN struktūrą geriausiai tinkančią parinkimo problemai spręsti pirmiausiai

testams buvo paruošta duomenų aibė skirta tinklo mokymams. ANN tinklo įėjimų duomenys

aprašomi 13 lentelėje. Nustatant tinklo išėjimo struktūrą buvo įvertinta ANN naudojama

perdavimo funkcija. Kadangi tinklo išėjime gali būti trijų rūšių reikšmės (automatinis, rankinis,

nesvarbu), perdavimo funkcija pasirinkta naudoti tan-sigmoid. Tansigmoid perdavimo

funkcijos reikšmės gali būti tarp -1 ir 1. Siekiant tinkamai interpretuoti gaunamas ANN

reikšmes, nuspręsta ANN išėjimo sluoksnį sudaryti iš trijų neuronų. Priskyrus metodo reikšmes

skaitinėms gauname:

 Rankinis testavimas yra -1 ir [0 0 1]; Automatinis

testavimas yra 1 ir [1 0 0];

 Nesvarbu, kuris testavimas yra 0 ir [0 1 0].

55

Pavyzdţiui, jeigu tinklas išėjime pateikia [0.8 0.3 -0.06], tai suradus maksimalią reikšmę ir jos

pozicijoje įrašius 1, o visas kitas reikšmes pakeitus į 0, gaunama [1 0 0]. Pagal ankstesnį paţymėjimą

šis kodas reiškia, kad yra gauta rekomendacija automatizuoti testą.

Tokiu būdu galima tiksliai atskirti ANN pateikiamas reikšmes.

Pasiruošus duomenis kiekvieno eksperimento metu buvo pateikiama tinkui 1000

mokymų duomenų, kurie atitinkamai padalinti į 70% mokymui, 15% validavimui ir 15%

testavimui. Nustatymas leistinas epochų skaičius 100 ir pageidautinas apmokymo tikslumas

0,00001, nes tinklo veikimo tikslumas yra vienas iš pagrindinių galutinio tinklo vertinimo

kriterijų. Atliekant eksperimentus buvo nagrinėjama perceptrono ir daugiasluoksnio neuroninio

tinklo tinkamumas testavimo parinkimo problemai spęsti. Percentronų tinklas buvo atmestas

kaip netinkamas dėl didelių paklaidų ir maţo išmokstamų bei naujų atpaţįstamų duomenų

skaičiaus. Dėl to buvo atlikti eksperimentai siekiant nustatyti daugiasluoksnio neuroninio tinklo

struktūrą: sluoksnių skaičių, neuronų skaičių kiekviename sluoksnyje, tinklo apmokymo

funkciją, paklaidos funkciją.

Eksperimentų metu nagrinėtos tinklo apmokymo funkcijos:

 trainlm – Levenberg-Marguardt; trainbr – Bayesian

Regularization; trainbfg – BFGS Quasi-Newton; trainrp

– Resilient Backpropagation; trainscg – Scaled Conjugate

Gradient; traincgb – Conjugate Gradient with

Powell/Beale Restarts; traincgf – Fletcher-Power

Conjugate Gradient; traincgp – Polak-Ribiere Conjugate

Gradient; trainoss – One Step Secant; traingdx –

Variable Learning Rate Gradient Descent; traingdm –

Gradient Descent with Momentum; traingd – Gradient

Descent.

Kiekvieno tipo eksperimentas buvo atliekamas po 30 kartų, kad apskaičiavus vidurkį būtų

galima tiksliau įvertinti ANN pateikiamus rezultatus. Vykdant eksperimentus įvertinant bendrą

spėjimų įvertį (naujų duomenų teisingą atpaţinimą), pasiektą išmokimo tikslumą, išmoktų įrašų

skaičių ir apsimokymo kreivę geriausiai pasirodė tinklas turintis 6 neuronus pirmame

paslėptame sluoksnyje ir 5 antrame. Apmokymo funkcija yra trainbr ir suminė vidutinės

kvadratinės paklaidos tikslumo funkcija (angl. sum squared error - SSE). Pagal 14 lentelėje

pateiktus duomenis įvertinus išmoktų duomenų skaičių (iš viso galėjo išmokti 1000 duomenų),

teisingai atspėtų naujų ir pasiektą tikslumą vienareikšmiškai pasakyti, kuris eksperimentas yra

56

geriausias sudėtinga. Todėl 14 lentelės duomenys analizuojami kartu su 30 pav. esančiomis

apmokymo kreivėmis. M2HL6-5N tinklas turi optimalius parametrus ir apmokymo kreivę, kuri

tolygiai ir be didesnių svyravimų gerina apsimokymo tikslumą. Kuo negali pasigirti M2HL1-

5N tinklas turintis didţiausią naujų duomenų atpaţinimo koeficientą, nes jo apsimokymo kreivė

iš pradţių per greitai didina tikslumą ir po to turi staigų lūţio kampą bei pasiektas tikslumas yra

prasčiausias lyginant su kitais eksperimentais. M2HL410N, M2HL8-10N kreivės taip pat per

greitai krinta, todėl jei turi vieną kurį iš parametrų geresnį, kiti labiau išsiskiria. Pavyzdţiui,

M2HL8-10N pasiekia vieną iš geresnių tikslumų ir išmoktų duomenų, bet sunkiau nuspėja

naujus duomenis. M2HL8-5N turi didţiausią išmoktų duomenų skaičių ir geriausią pasiektą

tikslumą, bet prasčiausiai pavyko nuspėti naujus duomenis, tai gali būti dėl to, kad jo

apmokymo kreivės tikslumas pirmomis iteracijomis buvo pats maţiausias. Todėl viską

apibendrinus nuspręsta tolimesniems tyrimams pasirinkti M2HL6-5N tinklą.

Vykdant tolimesnius tyrimus atlikus apmokymo funkcijų eksperimentus (15 lentelė), kai

naudota vidutinės kvadratinės paklaidos (angl. mean squared error - MSE) tikslumo funkcija

geriausiai pasirodė traincgp apmokymo funkcija, pralenkdama naudotą trainbr funkciją. Tačiau

atlikus tuos pačius funkcijų eksperimentus naudojant SSE, traincgp apmokymo funkciją

pralenkė traincgb funkcija. Rezultatus galima palyginti grafiškai 31 pav. Ţvaigţdute paţymėti

eksperimento duomenys piešiami prie pat x ašies, nes tikslumo funkcija naudojama MSE, o visų

kitų eksperimentų SSE, dėl to toks ryškus skirtumas, kai nėra sumuojamos paklaidos. Grafiškai

geriausiai atrodo traincgb sse kreivė, nes nėra didelių apsimokymo svyravimų, tolydţiai

gerinamas tikslumas.

14 lentelė. Atrinktų eksperimentų duomenys parenkant neuronų skaičių

Savybė M2HL1-5N M2HL4-

10N

M2HL6-

5N

M2HL8-

5N

M2HL8-

10N

Išmokta duomenų 819.6 854.3 853.4 871.3 862

Atspėta naujų 86.67% 75.00% 71.67% 63.33% 70.00%

Pasiektas

tikslumas

41.27 38.15 37.07 34.30 34.48

Teisingai

suklasifikuota

81.96% 85.43% 85.34% 87.13% 86.20%

Laikas, sek. 2.8188 3.6811 3.4204 5.0547 6.8171

15 lentelė. Atrinktų eksperimentų duomenys parenkant apmokymo funkciją

Savybė traincgp mse trainbr sse traincgp sse traincgb sse

Išmokta duomenų 841.1 853.4 822.1 839.0

Atspėta naujų 78.33% 71.67% 75.00% 80.00%

Pasiektas tikslumas 0.0812 37.07 41.67 38.75

57

Teisingai

suklasifikuota

84.11% 85.34% 82.21% 83.90%

Laikas, sek. 2.9781 3.4204 2.6064 2.4939

30 pav. Atrinktų eksperimentų apmokymo kreivės parenkant neuronų skaičių

31 pav. Atrinktų eksperimentų apmokymo kreivės parenkant apmokymo funkciją

58

Naudojant M2HL6-5N traincgb sse tinklas geriausiai atspėja naujus duomenis.

Kiekvieno eksperimento metu, tinklas turėjo atpaţinti naujus šešis duomenų rinkinius: 2 iš

rankinio testavimo, 2 iš nesvarbu, 2 iš automatinio testavimo. Susumavus kiekvieno

eksperimento metu iš 30 kartų, kiek teisingai atspėjo turimą gauti atsakymą, minėtas tinklas pateikia

tokius rezultatus: rankinis 10 ir 30, nesvarbu 29 ir 13, automatinis 29 ir 30. Gauti rezultatai rodo, kad

reikia atkreipti dėmesį dėl kokių prieţasčių tinklas vieną rankinio testavimo duomenų aibę atspėja tik

10 kartų iš 30, o kitą kartą visus 30 iš 30. Tai rodo, kad yra reikalingi tolimesni tyrimai, siekiant gerinti

tikslumą. Reikia panagrinėti kaip elgiasi gautas neuroninis tinklas, kai turimi skirtingi nauji duomenys,

kai yra kitokia apmokymui skirtų duomenų aibė.

6.2. Neuroninio tinklo parametrų analizės išvados

Atlikti ANN eksperimentai parodė, kad jų taikymas testavimo tipo parinkimo problemai

yra tinkamas. Tyrimų metu nustatyta, kad nagrinėjamą problemą geriausiai sprendţia

daugiasluoksnis neuroninis tinklas su dviem paslėptais sluoksniais, iš kurių pirmame turi 6

neuronus, o antrame 5, naudojama SSE tikslumo funkcija, tinklas apmokomas naudojant

Conjugate Gradient with Powell/Beale Restarts algoritmą. Tačiau dar yra reikalingi tolimesni

tyrimai, kad būtų galima surasti geresnę ANN struktūrą, padėsiančią pasiekti dar didesnį

prognozavimo tikslumą. Įvertinant, kad testavimo tipo parinkimo metodas skirtas projektų

vadovams ir testuotojams bei pagrindinis siekiamas tikslas, kad galėtų palengvinti ir padėtų

atsakingiau įvertinti, kuris testavimo tipas yra geriau tinkamas konkrečiomis sąlygomis, turi

būti nagrinėjama apmokymo duomenų aibės sudėtis, kaip įtakoja tinklo veikimą pateikiant jam

skirtingus apmokymo duomenis, kiek tinklas gali būti atsparus parinkti teisingą sprendimą.

6.3. Pradinių duomenų imties įtaka neuroninio tinklo apmokymui

Nustačius neuroninio tinklo struktūrą yra labai svarbu ţinoti, kaip gaunamų duomenų

tikslumas kinta esant skirtingam mokomųjų įrašų kiekiui. Neuroninio tinklo parametrų analizei

buvo naudojama 1000 pradinių duomenų. Papildomai išnagrinėtos imtys: 20, 50, 100, 200 ir

500. Jos sudarytos atsitiktiniu būdu išrenkant reikalingą kiekį duomenų iš 1000 duomenų imties

išlaikant proporcijas tarp galimų pasirinkimų (rankinio, automatinio ir nesvarbu). Kiekvienas

eksperimentas atliktas 30 kartų. Tyrimo rezultatų vidurkiai pateikti 16 lentelėje, o apmokymo

kreivės - 32 pav.

Vertinant gautus rezultatus, kai turimas skirtingas kiekis mokomųjų duomenų, aktualios

teisingo suklasifikavimo, pradinių duomenų išmokimo ir naujų duomenų atspėjimo savybės.

Jas palyginus tarpusavyje galima įvertinti, kad ne visada didesnis mokomųjų įrašų skaičius

59

lemia tikslesnę parinkimo prognozę. Eksperimentų metu pasiektas tikslumas sumaţėja didinant

pradinių duomenų skaičių, nes jis gaunamas sumuojant kvadratines paklaidas.

Tikslumas yra labiau vertinamas tarp to paties pradinių duomenų kiekio. Neuroninis tinklas apmokytas

su 500 ar 1000 pradinių duomenų pateikia aukštesnius įvertinimus uţ maţesnių imčių. Naujus duomenis

tinklas nuspėja prasčiausiai apmokytas maţiausiu duomenų kiekiu.

Bet toks tinklas geriau suklasifikuoja ir išmoksta duotus duomenis nei 50 ar 100 duomenų

apmokytas tinklas. Kai tinklas apmokomas su 200 duomenų, jis prasčiau nuspėja naujus

duomenis nors ir turi geresnį suklasifikavimo procentą nei 50 ar 100 duomenų. Vertinant gautus

rezultatus grafiškai pagal apmokymo kreivę dėl suminės kvadratinės paklaidos gautas tolydus

vaizdas, kai kreivės išsidėstę nagrinėjamų duomenų didėjimo tvarka. Atsiţvelgiant į gautus

rezultatus, buvo pasirinktas optimalus mokomųjų įrašų kiekis vykdant neuroninio tinklo

struktūros nustatymą.

16 lentelė. Eksperimentų duomenys kintant imties dydžiui

60

32 pav. Eksperimentų apmokymo kreivės pagal duomenų imties skaičių

6.4. Sprendimo taikymo rekomendacijos ir galimybės

Automatinio ar rankinio testavimo metodo parinkimas yra pagrindinė sukurto metodo taikymo

sritis. Įmonėms ar suinteresuotiems asmenims, kurie pradinių duomenų yra sukaupę maţiau nei 500,

siūloma apdairiau įvertinti metodo teikiamą sprendimą ir kaupiant duomenis stebėti teisingo

prognozavimo pasitvirtinimą. Tai padės ateityje priimant sprendimus dėl vieno ar kito testavimo

metodo panaudojimo. Pasiūlytas metodas gali būti panaudojamas ir kitiems parinkimo uţdaviniams

spręsti. Tuomet jį reikia pritaikyti pagal aktualaus uţdavinio specifiką, parinkti kriterijus.

Straipsniuose [33], [34] atsiţvelgiant į dėstomas mintis, kad kelių skirtingų metodikų

apjungimas padeda gauti geresnius rezultatus ir suteikia sistemoms adaptyvumo, apjungus

neuroninius tinklus kartu su spiečiaus ar kitu skaitinio intelekto metodu, galima tikėtis

patrauklesnių pateikto metodo rezultatų.

61

7. Išvados

1. Atlikus analizę buvo nuspręsta kurti testavimo tipo parinkimo metodą paremtą

dirbtiniais neuroniniais tinklais, skirtą testavimo metodo (rankinis, automatinis)

parinkimui.

2. Atlikta metodo funkcinių reikalavimų detali specifikacija, kuri padeda išskirti

panaudojimo atvejus, kuriems įgyvendinti pakanka metodo vartotojo ir kuriems yra

reikalinga pritaikyta sistema.

3. Sudarytas dalykinės srities modelis, atsiţvelgiant į metodo apmokymo ir naudojimo

paskirtis. Išskirtos esybės pritaikomos tiek savarankiškai nustatinėjant parametrus, tiek

pasinaudojant Matlab įrankio specializuotomis galimybėmis.

4. Detalizuotas metodo taikymas patvirtina, kad reikia skirti vienkartines papildomas

pastangas, kai metodas nėra apmokytas, o turint jau apmokytą metodą lieka tik išgauti

kriterijus iš sprendţiamos parinkimo problemos.

5. Įvertinus metodui realizuoti reikalingas priemones ir programinės įrangos priemones

nustatyta, kad Mathworks kompanijos Matlab produktas leidţia realizuoti įvairius

neuroninių tinklų sprendţiamus uţdavinius.

6. Remiantis atlikta literatūrine analize buvo nustatyta, kad neuroninį tinklą turi sudaryti

17 įėjimų ir 3 išėjimai. 17 skirtingų kriterijų įtakoja rankinių, automatinių testų parinkimą.

7. Atlikus eksperimentinius tyrimus nustatyta, kad optimalūs sprendimo rezultatai

gaunami, kai neuroninio tinklo struktūrą sudaro daugiasluoksnis neuroninis tinklas su

dviem paslėptais sluoksniais, 6 neuronais pirmame ir 5 antrame sluoksniuose, tikslumo

funkcija SSE, tinklui apmokyti naudojamas Conjugate Gradient with Powell/Beale

Restarts algoritmas.

8. Realizuotas siūlomo metodo sprendimas ir atlikti eksperimentiniai tyrimai patvirtino

teorinį metodo tinkamumą sprendţiant testavimo metodo parinkimo problemą.

9. Siekiant pagerinti metodo efektyvumą, ateityje naudinga išbandyti neuroninį tinklą

apjungti su kitu skaitinio intelekto metodu, kad metodo vartotojai galėtų tiksliau ir

pagrįsčiau priiminėti testavimo sprendimus.

62

8. Literatūra

1. Danna Henderson. Making The Decision To Automate Your Software Testing.

 [Ţiūrėta: 2010-01-14]. Prieiga per internetą:

http://www.testingbrain.com/ARTICLES/102.html

2. Ravesoft Solutions - IT services, IT solutions, IT consulting, IT Outsourcing. Quality

Assurance & Testing. [Ţiūrėta: 2009-12-04]. Prieiga per

 internetą: http://www.ravesoftsolutions.com/qa_testing.html

3. Tech Wizards, Inc. - Services: Testing. Testing, Validation and Verification. [Ţiūrėta: 2009-

12-04]. Prieiga per internetą: http://www.tech-wizards.com/services.test.html

4. KTU Informacijos sistemų katedra. [Ţiūrėta: 2009-12-06]. Prieiga per internetą:

ftp://isd.ktu.lt/Isd/Ceponiene/T120M123/12%20paskaita.pdf

5. Ron Patton. Software Testing. (2nd Edition) Sams Punblishing, 2005. – 408 p. ISBN 0-672-

32798-8.

6. OTS Solutions. Manual Testing V/S Automated Testing. [Ţiūrėta: 2010-01-03]. Prieiga per

internet: http://www.otssolutions.com/doc/whitepapers/manual-testing-vsautomated-

testing.pdf

7. Mark Fewster, Dorothy Graham. Software Test Automation: Effective use of test execution

tools. New York: ACM Press/Addison-Wesley Publishing Co., 1999. – 574 p. ISBN 0-201-

33140-3.

8. ARTIFICIAL NEURAL NETWORKS - A neural network tutorial. [Ţiūrėta: 2009-10-

12]. Prieiga per internetą: http://www.learnartificialneuralnetworks.com/

9. Deepam Agarwal. A Comparative Study Of Artificial Neural Networks And Info Fuzzy

Networks On Their Use In Software Testing. 2004 m. vasara. [Ţiūrėta: 2009-10-10]. Prieiga

per internetą: http://etd.fcla.edu/SF/SFE0000445/FinalThesis_Deepam.pdf

10. Info-Fuzzy Network (IFN). [Ţiūrėta: 2009-11-09]. Prieiga per

 internetą: http://www.ise.bgu.ac.il/faculty/mlast/ifn.htm

11. Scott Dick, Abraham Kandel. Computational Intelligence in Software Quality Assurance.

(Series in Machine Perception and Artificial Intelligence - Vol. 63) – Singapore: World

Scientific Publishing Company, 2005. – 200 p. ISBN 981-256-172-

2.

12. Genetic Algorithm (GA) | Metaheuristics for Optimal Transfer of P2P Information in

VANETs. Genetic Algorithm (GA). [Ţiūrėta: 2009-12-04]. Prieiga per internetą:

http://neo.lcc.uma.es/staff/jamal/portal/?q=content/genetic-algorithm-ga

http://www.testingbrain.com/ARTICLES/102.html
http://www.testingbrain.com/ARTICLES/102.html
http://www.ravesoftsolutions.com/qa_testing.html
http://www.ravesoftsolutions.com/qa_testing.html
http://www.tech-wizards.com/services.test.html
http://www.tech-wizards.com/services.test.html
http://www.tech-wizards.com/services.test.html
http://www.tech-wizards.com/services.test.html
ftp://isd.ktu.lt/Isd/Ceponiene/T120M123/12 paskaita.pdf
ftp://isd.ktu.lt/Isd/Ceponiene/T120M123/12 paskaita.pdf
http://www.otssolutions.com/doc/whitepapers/manual-testing-vs-automated-testing.pdf
http://www.otssolutions.com/doc/whitepapers/manual-testing-vs-automated-testing.pdf
http://www.otssolutions.com/doc/whitepapers/manual-testing-vs-automated-testing.pdf
http://www.otssolutions.com/doc/whitepapers/manual-testing-vs-automated-testing.pdf
http://www.otssolutions.com/doc/whitepapers/manual-testing-vs-automated-testing.pdf
http://www.otssolutions.com/doc/whitepapers/manual-testing-vs-automated-testing.pdf
http://www.otssolutions.com/doc/whitepapers/manual-testing-vs-automated-testing.pdf
http://www.otssolutions.com/doc/whitepapers/manual-testing-vs-automated-testing.pdf
http://www.otssolutions.com/doc/whitepapers/manual-testing-vs-automated-testing.pdf
http://www.otssolutions.com/doc/whitepapers/manual-testing-vs-automated-testing.pdf
http://www.learnartificialneuralnetworks.com/
http://www.learnartificialneuralnetworks.com/
http://etd.fcla.edu/SF/SFE0000445/FinalThesis_Deepam.pdf
http://etd.fcla.edu/SF/SFE0000445/FinalThesis_Deepam.pdf
http://www.ise.bgu.ac.il/faculty/mlast/ifn.htm
http://www.ise.bgu.ac.il/faculty/mlast/ifn.htm
http://neo.lcc.uma.es/staff/jamal/portal/?q=content/genetic-algorithm-ga
http://neo.lcc.uma.es/staff/jamal/portal/?q=content/genetic-algorithm-ga
http://neo.lcc.uma.es/staff/jamal/portal/?q=content/genetic-algorithm-ga
http://neo.lcc.uma.es/staff/jamal/portal/?q=content/genetic-algorithm-ga
http://neo.lcc.uma.es/staff/jamal/portal/?q=content/genetic-algorithm-ga
http://neo.lcc.uma.es/staff/jamal/portal/?q=content/genetic-algorithm-ga
http://neo.lcc.uma.es/staff/jamal/portal/?q=content/genetic-algorithm-ga
http://neo.lcc.uma.es/staff/jamal/portal/?q=content/genetic-algorithm-ga

63

13. Balsas.lt. Išlieka tie, kurie yra altruistiški. [Ţiūrėta: 2009-12-07]. Prieiga per internetą:

http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yraaltruistiski/rubrika:naujienos-

mokslasirit-mokslas

14. Eric Bonabeau, Marco Dorigo, Guy Theraulaz. Swarm Intelligence: From Natural to Artificial

Systems. (Santa Fe Institute Studies in the Sciences of Complexity Proceedings). New York:

Oxford University Press, 1999. – 307 p. ISBN 0195131592

15. The Tech FAQ. What is Swarm Intelligence? [Ţiūrėta: 2009-12-04]. Prieiga per internetą:

http://www.tech-faq.com/swarm-intelligence.shtml

16. National Geographic Magazine. Swarm Theory. [Ţiūrėta: 2009-12-04]. Prieiga per internetą:

http://ngm.nationalgeographic.com/2007/07/swarms/miller-text

17. LIACS Natural Computing Group Leiden University. Swarm Intelligence. [Ţiūrėta: 2009-12-

05]. Prieiga per internetą: http://natcomp.liacs.nl/NC/slides/si.pdf

18. Sabu M. Thampi. Swarm Intelligence. [Ţiūrėta: 2009-12-06]. Prieiga per internetą:

http://arxiv.org/ftp/arxiv/papers/0910/0910.4116.pdf

19. Wikipedia, the free encyclopedia. Aco branches. [Ţiūrėta: 2009-12-06]. Prieiga per internetą:

http://en.wikipedia.org/wiki/File:Aco_branches.svg

20. Russ Eberhart's Home Page. [Ţiūrėta: 2009-12-06]. Prieiga per internetą:

http://www.engr.iupui.edu/~eberhart/

21. Particle Swarm Optimization. Introduction. [Ţiūrėta: 2009-12-06]. Prieiga per internetą:

http://www.swarmintelligence.org/

22. A.P. Engelbrecht, Computational intelligence (an introduction) – West Sussex: John Wiley

and Sons Inc., 2002. – 208 p. ISBN 0-470-84870-7

23. Jovita Nenortaitė. Akcijų prekybos sistema, paremta spiečiaus intelektu ir dirbtiniais

neuroniniais tinklais. Daktaro disertacija. Vilniaus Universiteto leidykla, 2006. – 121 p.

24. Elisa Valentina Oneţ. Particle Swarm Optimization and Genetic Algorithms. [Ţiūrėta:

2009-12-07]. Prieiga per internetą:

http://electroinf.uoradea.ro/reviste%20CSCS/documente/JCSCS_2009/Articole_pdf_J

CSCS_C_nr_2/JCSCS_2009_Nr_2_CS_Onet_Particle.pdf

25. Dr. Karl O. Jones. Comparison of Genetic Algorithm and Particle Swarm

Optimisation. // International Conference on Computer Systems and Technologies -

 CompSysTech’2005. [Ţiūrėta: 2009-12-07]. Prieiga per internetą:

http://ecet.ecs.ru.acad.bg/cst05/Docs/cp/SIII/IIIA.1.pdf

26. Thom Garrett. Useful Automated Software Testing Metrics. [Ţiūrėta: 2010-01-30].

Prieiga per internetą:

http://www.innovativedefense.com/img/UsefulAutomatedTestingMetrics.pdf

http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.balsas.lt/naujiena/237642/islieka-tie-kurie-yra-altruistiski/rubrika:naujienos-mokslasirit-mokslas
http://www.tech-faq.com/swarm-intelligence.shtml
http://www.tech-faq.com/swarm-intelligence.shtml
http://www.tech-faq.com/swarm-intelligence.shtml
http://www.tech-faq.com/swarm-intelligence.shtml
http://www.tech-faq.com/swarm-intelligence.shtml
http://www.tech-faq.com/swarm-intelligence.shtml
http://ngm.nationalgeographic.com/2007/07/swarms/miller-text
http://ngm.nationalgeographic.com/2007/07/swarms/miller-text
http://ngm.nationalgeographic.com/2007/07/swarms/miller-text
http://ngm.nationalgeographic.com/2007/07/swarms/miller-text
http://natcomp.liacs.nl/NC/slides/si.pdf
http://natcomp.liacs.nl/NC/slides/si.pdf
http://arxiv.org/ftp/arxiv/papers/0910/0910.4116.pdf
http://arxiv.org/ftp/arxiv/papers/0910/0910.4116.pdf
http://en.wikipedia.org/wiki/File:Aco_branches.svg
http://en.wikipedia.org/wiki/File:Aco_branches.svg
http://www.engr.iupui.edu/~eberhart/
http://www.engr.iupui.edu/~eberhart/
http://www.swarmintelligence.org/
http://www.swarmintelligence.org/
http://electroinf.uoradea.ro/reviste%20CSCS/documente/JCSCS_2009/Articole_pdf_JCSCS_C_nr_2/JCSCS_2009_Nr_2_CS_Onet_Particle.pdf
http://electroinf.uoradea.ro/reviste%20CSCS/documente/JCSCS_2009/Articole_pdf_JCSCS_C_nr_2/JCSCS_2009_Nr_2_CS_Onet_Particle.pdf
http://electroinf.uoradea.ro/reviste%20CSCS/documente/JCSCS_2009/Articole_pdf_JCSCS_C_nr_2/JCSCS_2009_Nr_2_CS_Onet_Particle.pdf
http://electroinf.uoradea.ro/reviste%20CSCS/documente/JCSCS_2009/Articole_pdf_JCSCS_C_nr_2/JCSCS_2009_Nr_2_CS_Onet_Particle.pdf
http://ecet.ecs.ru.acad.bg/cst05/Docs/cp/SIII/IIIA.1.pdf
http://ecet.ecs.ru.acad.bg/cst05/Docs/cp/SIII/IIIA.1.pdf
http://www.innovativedefense.com/img/UsefulAutomatedTestingMetrics.pdf
http://www.innovativedefense.com/img/UsefulAutomatedTestingMetrics.pdf

64

27. Nenortaitė J., Butleris R. Improving business rules management through the application of

adaptive business intelligence technique. Information Technology and Control, Vol. 36, No.

1, p. 21-28, 2009.

28. The MathWorks. Neural Network Toolbox. Product Description. [Ţiūrėta: 2010-06-

03]. Prieiga per internetą:

http://www.mathworks.com/products/neuralnet/description1.html

29. The MathWorks. Neural Network Toolbox. Funkcions by Class. [Ţiūrėta: 2010-06-18]

Prieiga per internetą:

http://www.mathworks.com/access/helpdesk_r13/help/toolbox/nnet/tabls12a.html

30. Christopher M. Bishop. Neural Networks for Pattern Recognition. New York: Oxford

University Press, 1995. – 482 p. ISBN 0198538642

31. The MathWorks. Systems Requirements – Release 2009a. [Ţiūrėta: 2010-12-

16].Prieiga per internetą:

 http://www.mathworks.com/support/sysreq/release2009a/index.html

32. The MathWorks. Systems Requirements – Neural Network Toolbox. [Ţiūrėta: 2010-

12-16]. Prieiga per internetą:

http://www.mathworks.com/products/neuralnet/requirements.html

33. Corchado E., Abraham A., Carvalho A.: Hybrid Intelligent Algorithms and Applications.

Information Sciences, 2633–2634 (2010)

34. Gabrys B.: Do Smart Adaptive Systems Exist? Hybrid Intelligent Systems Perspective. In:

Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS

(LNAI), vol. 5271, pp. 2–3. Springer, Heidelberg (2008)

35. E. Corchado, M. Kurzynski, M. Wozniak (Eds.): HAIS 2011, Part I, LNAI 6678, pp. 247-254.

Springer, Heidelberg (2011)

9. Santrumpų ir terminų žodynas
Santrumpa Angliškas terminas Lietuviškas terminas

AB Achieving Budget Testavimo finansinių lėšų išnaudojimas

ACO Ant Colony Optimization Skruzdţių kolonijos optimizavimo

algoritmas

ANN Artificial Neural Networks Dirbtiniai neuroniniai tinklai

CE Coverage Extension Testavimo apimties padidinimas

DD Defect Density Defektų tankis

http://www.mathworks.com/products/neuralnet/description1.html
http://www.mathworks.com/products/neuralnet/description1.html
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/nnet/tabls12a.html
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/nnet/tabls12a.html
http://www.mathworks.com/support/sysreq/release2009a/index.html
http://www.mathworks.com/support/sysreq/release2009a/index.html
http://www.mathworks.com/support/sysreq/release2009a/index.html
http://www.mathworks.com/products/neuralnet/requirements.html
http://www.mathworks.com/products/neuralnet/requirements.html

65

DDP Defect Detection Percentage Procentinis defektų aptikimas

DDT Defect Detection in Testing Testavimo metu aptiktų defektų skaičius

FP Function Point Funkcinis taškas

GA Genetic Algorithms Genetiniai algoritmai

IFN Information Fuzzy Network Miglotos informacijos tinklas

KLOC Kilo lines of code Tūkstantis kodo eilučių

MLP Multilayer Perceptron Daugiasluoksnis perceptronas

MSE Mean Squared Error Vidutinė kvadratinė paklaida

MTBF Mean Time Between Failure Vidutinis laikas tarp sistemos lūţimų

MTTF Mean Time to Failure Vidutinis sistemos lūţimo laikas

PĮ Software Programinė įranga

PSO Particle Swarm Optimization Dalelių spiečiaus optimizavimo algoritmas

ROI Return of Investment Investicijų grąţa

SI Swarm Intelligence Spiečiaus intelektas

SSE Sum Squared Error Suminė vidutinė kvadratinė paklaida

10. Priedai

1 priedas. Straipsnis leidinyje „Informacinė visuomenė ir universitetinės studijos

IVUS 2010“

66

67

68

69

70

71

72

2 priedas. Pažyma dėl priimto publikuoti mokslinio straipsnio (IVUS 2010)

73

74

3 priedas. Straipsnis leidinyje „Proceedings of the 6th International Conference

on Hybrid Artificial Intelligence Systems HAIS 2011“

Straipsnio „Artificial Neural Networks Application in SoftwareTesting Selection Method―

pilna versija (8 lapai) pasiekiami www.springerlink.com puslapyje. Detali nuoroda:

http://www.springerlink.com/content/978-3-642-21218-5#section=898819&page=1&locus=0

http://www.springerlink.com/
http://www.springerlink.com/
http://www.springerlink.com/content/978-3-642-21218-5#section=898819&page=1&locus=0
http://www.springerlink.com/content/978-3-642-21218-5#section=898819&page=1&locus=0
http://www.springerlink.com/content/978-3-642-21218-5#section=898819&page=1&locus=0
http://www.springerlink.com/content/978-3-642-21218-5#section=898819&page=1&locus=0
http://www.springerlink.com/content/978-3-642-21218-5#section=898819&page=1&locus=0
http://www.springerlink.com/content/978-3-642-21218-5#section=898819&page=1&locus=0
http://www.springerlink.com/content/978-3-642-21218-5#section=898819&page=1&locus=0
http://www.springerlink.com/content/978-3-642-21218-5#section=898819&page=1&locus=0
http://www.springerlink.com/content/978-3-642-21218-5#section=898819&page=1&locus=0
http://www.springerlink.com/content/978-3-642-21218-5#section=898819&page=1&locus=0

4 priedas. ANN apmokymas ir sprendimo prognozės

clc; close all; clear all;
svoriu_failas = 'svoriai_1HL_6.csv';
FLN = 6; % pirmo paslepto sluoksnio neuronu sk.
SLN = 5; % antro paslepto sluoksnio neuronu sk.
eks_nr = 1;
k = FLN-1; % k reiksme skirta svoriu ribai nustatyti mokymo_f
= 'traincgb';

% DUOMENU PASIRUOSIMAS
duom=csvread('duomenys_1000.csv',0,0,[0,0,999,16]);
rez=csvread('duomenys_1000.csv',0,17);
input_weights = csvread(svoriu_failas,0,0,[0,0,k,16]); input_bias
= csvread(svoriu_failas,0,17);

% nustatoma kiek kurios grupes duomenu naudojama, pagal nuskaitoma faila
m = size(find(rez==-1),1); % vnt = -1 rankinis n =
size(find(rez==0),1); % vnt = 0 nesvarbu k = size(find(rez==1),1); %
vnt = 1 automatinis
P = duom;
Tm = [zeros(m,1) zeros(m,1) ones(m,1)]; % rankinis
Tn = [zeros(n,1) ones(n,1) zeros(n,1)]; % nesvarbu
Tk = [ones(k,1) zeros(k,1) zeros(k,1)]; % automatinis
T = [Tm; Tn; Tk];

% SUKURIAMAS DAUGIASLUOKSNIS ANN TINKLAS
% NumberOfHiddenLayerNeurons = FLN; %
NeuronsOfSecondLayer = SLN;
net = newff(P', T',[FLN, SLN],{'tansig', 'tansig', 'purelin'},mokymo_f);
%sukuriamas tinklas net.divideFcn = 'dividerand';
net.divideParam.trainRatio = 0.7; % nustatoma kokia duomenu dalis naudojama

train
net.divideParam.valRatio = 0.15; % nustatoma kokia duomenu dalis naudojama

validate
net.divideParam.testRatio = 0.15; % nustatoma kokia duomenu dalis naudojama

test
net.trainParam.lr = 0.05; % nustatomas apmokymo zingsnis (angl. learning

rate)
net.trainParam.epochs = 100; % nustatomas max epochu skaicius
net.trainParam.goal = 0.00001; % nustatomas tikslumas
net.iw{1,1} = input_weights; % priskiriami svoriai nuskaityti is failo
net.b{1} = input_bias; % priskiriami bias nuskaityti is failo
net.performFcn = 'sse';

% APMOKOMAS ANN
[net, tr, Y, E] = train(net,P',T'); %vykdomas apmokymas
final_weight= net.iw{1,1}; % isimenami svoriai po apmokymo
final_bias = net.b{1}; % isimenami bias po apmokymo
out = sim(net, P'); % imituojamas tinklas out1 =
[zeros(m+n+k,1) zeros(m+n+k,1) zeros(m+n+k,1)]; out2 =
zeros(m+n+k,1);
[maks,vieta] = max(out);
% gauti duomenys atverciami i pradini duomenu formata
for i = 1:n+m+k if vieta(i) == 1
out1(i, :) = [1 0 0]; out2(i)= 1;

79

 elseif vieta(i) == 2
out1(i, :) = [0 1 0];
out2(i) = 0; else

out1(i, :) = [0 0 1];
out2(i) = -1; end end

% MOKYMO REZULTATAI ismoko_sk =
0; neismoko_sk = 0; for i =
1:n+m+k if rez(i) ==
out2(i) ismoko_sk =
ismoko_sk+1; else
 neismoko_sk = neismoko_sk+1; end end
fprintf('Naudota duomenu: %d, rankinio %d, nesvarbu %d, automatinis
%d',n+m+k, m, n, k);
fprintf('\nApmokymo metu ismokta: %d',ismoko_sk); if
neismoko_sk ~= 0 fprintf('\nApmokymo metu neismoko:
%d\n',neismoko_sk); end
naujas=csvread('duomenys_tikrinimui.csv',0,0,[0,0,5,16]);
fprintf('\nTikrinamas rinkinys turi buti: rankinis, nesvarbu,

automatinis'); fprintf('\nAnksciau buve: rankinis, nesvarbu,
automatinis\n'); fprintf('\nTikrinamo duomenu rinkinio
prognoze:\n'); outnaujas = sim(net, naujas');
[maksNaujas, vietaNaujas] = max(outnaujas);
stebejimui = zeros(6,1); for i = 1:6
 if vietaNaujas(i) == 3
fprintf('%d: rankinis\n',i);
stebejimui(i)= -1; elseif
vietaNaujas(i) == 1
fprintf('%d: automatinis\n',i);
stebejimui(i) = 1; else
fprintf('%d: nesvarbu\n',i);
stebejimui(i) = 0; end
end

80

