

About This E-Book

EPUB is an open, industry-standard format for e-books. However, support for EPUB
and its many features varies across reading devices and applications. Use your device
or app settings to customize the presentation to your liking. Settings that you can
customize often include font, font size, single or double column, landscape or portrait
mode, and figures that you can click or tap to enlarge. For additional information about
the settings and features on your reading device or app, visit the device manufacturer’s
Web site.
Many titles include programming code or configuration examples. To optimize the
presentation of these elements, view the e-book in single-column, landscape mode and
adjust the font size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included images of the code that
mimic the presentation found in the print book; therefore, where the reflowable format
may compromise the presentation of the code listing, you will see a “Click here to
view code image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.

Mike Geig

SamsTeachYourself

Unity® 2018

Game Development

 800 East 96th Street, Indianapolis, Indiana 46240 USA

Sams Teach Yourself Unity® 2018 Game Development in 24 Hours
Copyright © 2018 by Pearson Education
All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/. No patent liability is assumed with respect to the
use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.
ISBN-13: 978-0-13-499813-8
ISBN-10: 0-13-499813-8
Library of Congress Control Number: 2018902432
01 18

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis.
The author and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.
The Unity name, logo, brand, and other trademarks or images featured or referred to
within this book are licensed from and are the property of Unity Technologies. Neither
this book or the publisher is affiliated with, endorsed by, or sponsored by Unity
Technologies.
All images herein of the Unity editor are provided courtesy of Unity Technologies. ©
2017–18 Unity Technologies
Microsoft and/or its respective suppliers make no representations about the suitability
of the information contained in the documents and related graphics published as part of
the services for any purpose all such documents and related graphics are provided “as
is” without warranty of any kind. Microsoft and/or its respective suppliers hereby
disclaim all warranties and conditions with regard to this information, including all
warranties and conditions of merchantability, whether express, implied or statutory,
fitness for a particular purpose, title and non-infringement. In no event shall Microsoft

http://www.pearsoned.com/permissions/

and/or its respective suppliers be liable for any special, indirect or consequential
damages or any damages whatsoever resulting from loss of use, data or profits,
whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of information available from the services.
The documents and related graphics contained herein could include technical
inaccuracies or typographical errors. Changes are periodically added to the information
herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time. Partial
screen shots may be viewed in full within the software version specified.
Microsoft® Windows®, and Microsoft Office® are registered trademarks of the
Microsoft Corporation in the U.S.A. and other countries. This book is not sponsored or
endorsed by or affiliated with the Microsoft Corporation.

Special Sales
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.
For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief
Mark Taub
Acquisition Editors
Laura Lewin
Malobika Chakraborty
Development Editor
Michael Thurston
Managing Editor
Sandra Schroeder
Project Editor
Mandie Frank
Copy Editor
Kitty Wilson
Indexer
Erika Millen
Proofreader
Gill Editorial Services
Technical Editor
Michael Wu

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Editorial Assistant
Courtney Martin
Designer
Chuti Prasertsith
Compositor
codemantra

Contents at a Glance

Hour 1 Introduction to Unity
 2 Game Objects
 3 Models, Materials, and Textures
 4 Terrain and Environments
 5 Lights and Cameras
 6 Game 1: Amazing Racer
 7 Scripting, Part 1
 8 Scripting, Part 2
 9 Collision
10 Game 2: Chaos Ball
11 Prefabs
12 2D Game Tools
13 2D Tilemap
14 User Interfaces
15 Game 3: Captain Blaster
16 Particle Systems
17 Animations
18 Animators
19 Timeline
20 Game 4: Gauntlet Runner
21 Audio
22 Mobile Development
23 Polish and Deploy
24 Wrap-up

Index

Table of Contents

HOUR 1: Introduction to Unity
Installing Unity
Getting to Know the Unity Editor
Navigating the Unity Scene View
Summary
QA
Workshop
Exercise

HOUR 2: Game Objects
Dimensions and Coordinate Systems
Game Objects
Transforms
Summary
QA
Workshop
Exercise

HOUR 3: Models, Materials, and Textures
The Basics of Models
Textures, Shaders, and Materials
Summary
QA
Workshop
Exercise

HOUR 4: Terrain and Environments
Terrain Generation
Terrain Textures
Generating Trees and Grass
Character Controllers
Summary
QA
Workshop

Exercise

HOUR 5: Lights and Cameras
Lights
Cameras
Layers
Summary
QA
Workshop
Exercise

HOUR 6: Game 1: Amazing Racer
Design
Creating the Game World
Gamification
Playtesting
Summary
QA
Workshop
Exercise

HOUR 7: Scripting, Part 1
Scripts
Variables
Operators
Conditionals
Iteration
Summary
QA
Workshop
Exercise

HOUR 8: Scripting, Part 2
Methods
Input
Accessing Local Components
Accessing Other Objects
Summary
QA

Workshop
Exercise

HOUR 9: Collision
Rigidbodies
Enabling Collision
Triggers
Raycasting
Summary
QA
Workshop
Exercise

HOUR 10: Game 2: Chaos Ball
Design
The Arena
Game Entities
The Control Objects
Improving the Game
Summary
QA
Workshop
Exercise

HOUR 11: Prefabs
Prefab Basics
Working with Prefabs
Summary
Q&A
Workshop
Exercise

HOUR 12: 2D Game Tools
The Basics of 2D Games
Orthographic Cameras
Adding Sprites
Draw Order
2D Physics
Summary

Q&A
Workshop
Exercise

HOUR 13: 2D Tilemap
The Basics of Tilemaps
Palettes
Tiles
Tilemaps and Physics
Summary
Q&A
Workshop
Exercise

HOUR 14: User Interfaces
Basic UI Principles
The Canvas
UI Elements
Canvas Render Modes
Summary
Q&A
Workshop
Exercise

HOUR 15: Game 3: Captain Blaster
Design
The World
Controls
Improvements
Summary
Q&A
Workshop
Exercise

HOUR 16: Particle Systems
Particle Systems
Particle System Modules
The Curves Editor
Summary

Q&A
Workshop
Exercise

HOUR 17: Animations
Animation Basics
Animation Types
Animation Tools
Summary
Q&A
Workshop
Exercise

HOUR 18: Animators
Animator Basics
Configuring Your Assets
Creating an Animator
Scripting Animators
Summary
Q&A
Workshop
Exercise

HOUR 19: Timeline
Timeline Basics
Working with Timelines
Going Beyond Simple Control
Summary
Q&A
Workshop
Exercise

HOUR 20: Game 4: Gauntlet Runner
Design
The World
The Entities
The Controls
Room for Improvement
Summary

Q&A
Workshop
Exercise

HOUR 21: Audio
Audio Basics
Audio Sources
Audio Scripting
Audio Mixers
Summary
Q&A
Workshop
Exercise

HOUR 22: Mobile Development
Preparing for Mobile
Accelerometers
Summary
Q&A
Workshop
Exercise

HOUR 23: Polish and Deploy
Managing Scenes
Persisting Data and Objects
Unity Player Settings
Building Your Game
Summary
Q&A
Workshop
Exercise

HOUR 24: Wrap-up
Accomplishments
Your 19 Hours of Learning
Where to Go from Here
Resources Available to You
Summary
Q&A

Workshop
Exercise

Index

Preface

The Unity game engine is an incredibly powerful and popular choice for professional
and amateur game developers alike. This book has been written to get readers up to
speed and working in Unity as fast as possible (in about 24 hours, to be exact) while
covering fundamental principles of game development. Unlike other books that cover
only specific topics or spend the entire time teaching a single game, this book covers a
large array of topics while still managing to contain four games. Talk about a bargain!
By the time you are done reading this book, you won’t have just theoretical knowledge
of the Unity game engine. You will have a portfolio of games to go with it.

About the Author

Mike Geig is the global head of evangelism content at Unity Technologies, where he
helps democratize game development by developing and delivering high-impact
learning resources. Mike has experience as an indie game developer, a university
educator, and an author. A gamer at heart, Mike works to make the development of
interactive entertainment fun and accessible for all skill sets. Hi, Mom!

Dedication

Kara, I decided to wait until the third edition to dedicate this book to you so that later,
when you say, “You never dedicated a book to me,” I can respond with, “Guess

again!” Thank you for continuing to be my foundation.

Acknowledgments

A big thank-you goes out to everyone who helped me write this book.
First and foremost, thank you, Kara, for keeping me on track. I don’t know what we’ll
be talking about when this book comes out, but whatever it is, you are probably right.
Love ya, babe.
Link and Luke: We should take it easy on Mommy for a little while. I think she’s
about to crack.
Thanks to my parents. As I am now a parent myself, I recognize how hard it was for
you not to strangle or stab me. Thanks for not strangling or stabbing me.
Thanks to Angelina Jolie. Due to your role in the spectacular movie Hackers (1995), I
decided to learn how to use a computer. You underestimate the impact you had on 10-
year-olds at the time. You’re elite!
To the inventor of beef jerky: History may have forgotten your name but definitely not
your product. I love that stuff. Thanks!
Thank you to Michael Wu for not only agreeing to be a technical editor on this book
but also being the other Mike on our podcast “Mikes’ Video Game Podcast.” (I just
had to get a plug in there.)
Thank you, Laura, for convincing me to write this book. Also, thank you for buying
me lunch at GDC. I feel that lunch, the best of all three meals, specifically allowed me
to finish this.
Finally, a thank-you is in order for Unity Technologies. If you’d never made the Unity
game engine, this book would be very weird and confusing.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.
We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.
Please note that we cannot help you with technical problems related to the topic of this
book.
When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.
Email: feedback@samspublishing.com
Mail: Sams Publishing
ATTN: Reader Feedback
 800 East 96th Street
 Indianapolis, IN 46240 USA

mailto:feedback@samspublishing.com

Reader Services

Register your copy of Sams Teach Yourself Unity 2018 Game Development in 24
Hours at informit.com for convenient access to downloads, updates, and corrections as
they become available. To start the registration process, go to informit.com/register
and log in or create an account*. Enter the product ISBN, 9780134998138, and click
Submit. Once the process is complete, you will find any available bonus content under
Registered Products.
*Be sure to check the box that you would like to hear from us in order to receive
exclusive discounts on future editions of this product.

Who Should Read This Book
This book is for anyone looking to learn how to use the Unity game engine. Whether
you are a student or a development expert, there is something to learn in these pages. It
is not assumed that you have any prior game development knowledge or experience,
so don’t worry if this is your first foray into the art of making games. Take your time
and have fun. You will be learning in no time.

How This Book Is Organized
Following the Sam’s Teach Yourself approach, this book is organized into 24 chapters
that should take approximately 1 hour each to work through. The chapters are as
follows:

 Hour 1, “Introduction to Unity”—This hour gets you up and running with the
various components of the Unity game engine.
 Hour 2, “Game Objects”—Hour 2 teaches you how to use the fundamental
building blocks of the Unity game engine—game objects. You’ll also learn
about coordinate systems and transformations.
 Hour 3, “Models, Materials, and Textures”—In this hour, you’ll learn to work
with Unity’s graphical asset pipeline as you apply shaders and textures to
materials. You’ll also learn how to apply those materials to a variety of 3D
objects.
 Hour 4, “Terrain and Environments”—In Hour 4, you’ll learn to sculpt game
worlds using Unity’s terrain system. Don’t be afraid to get your hands dirty as
you dig around and create unique and stunning landscapes.
 Hour 5, “Lights and Cameras”—Hour 5 covers lights and cameras in great
detail.
 Hour 6, “Game 1: Amazing Racer”: Time for your first game! In Hour 6, you’ll

http://informit.com
http://informit.com/register

create Amazing Racer, which requires you to apply all the knowledge you have
gained so far.
 Hour 7, “Scripting, Part 1”—In Hour 7, you’ll begin your foray into scripting
with Unity. If you’ve never programmed before, don’t worry. This hour takes
it slow so you can learn the basics.
 Hour 8, “Scripting, Part 2”—This hour expands on what you learned in Hour 7,
focusing on more advanced topics.
 Hour 9, “Collision”—Hour 9 walks you through the various collision
interactions that are common in modern video games. You’ll learn about
physical as well as trigger collisions. You’ll also learn to create physical
materials to add some variety to your objects.
 Hour 10, “Game 2: Chaos Ball”—Time for another game! In this hour, you’ll
create Chaos Ball. This title certainly is apt, as the game involves various
collisions, physical materials, and goals. Prepare to mix strategy with twitch
reaction.
 Hour 11, “Prefabs”—Prefabs enable you to create repeatable game objects. In
Hour 11, you’ll learn to create and modify prefabs.
 Hour 12, “2D Game Tools”—In Hour 12, you’ll learn about Unity’s powerful
tools for creating 2D games, including how to work with sprites and Box2D
physics.
 Hour 13, “2D Tilemap”—In Hour 13, you’ll learn how to construct complex
2D environments out of simple sprite tiles.
 Hour 14, “User Interfaces”—In this hour, you’ll learn how to use Unity’s
powerful user interface system and how to create a menu for your game.
 Hour 15, “Game 3: Captain Blaster”—Game number 3! In this hour, you’ll
make Captain Blaster, a retro-style spaceship shooting game.
 Hour 16, “Particle Systems”—Time to learn about particle effects. In this
chapter, you’ll experiment with Unity’s particle system to create cool effects
and apply them to your projects.
 Hour 17, “Animations”—In Hour 17, you’ll learn about animations and
Unity’s animation system. You’ll experiment with 2D and 3D animation and
some powerful animation tools.
 Hour 18, “Animators”—Hour 18 is all about Unity’s Mecanim animation
system. You’ll learn how to use the powerful state machine and how to blend
animations.
 Hour 19, “Timeline”—In this hour, you’ll learn how to sequence many game
object animations together by using the new Timeline system.
 Hour 20, “Game 4: Gauntlet Runner”—Lucky game number 4 is called
Gauntlet Runner. This game explores a new way to scroll backgrounds and
shows how to implement them for advanced gameplay functionality.
 Hour 21, “Audio”—Hour 21 has you adding important ambient audio effects.

You’ll learn about 2D and 3D audio and their different properties.
 Hour 22, “Mobile Development”—In this hour, you’ll learn how to build
games for mobile devices. You’ll also learn to utilize a mobile device’s built-in
accelerometer and multi-touch display.
 Hour 23, “Polish and Deploy”—Time to learn how to add multiple scenes and
persist data between scenes! You’ll also learn about the deployment settings
and playing your games.
 Hour 24, “Wrap-up”—Here, you’ll look back on the journey you took to learn
Unity. This hour provides useful information about what you have done and
where to go next.

Thank you for reading my Preface! I hope you’ll enjoy this book and learn much from
it. Good luck on your journey with the Unity game engine!

Companion Files
Bonus files include full source code listings from every chapter, with author
comments, all third-party art assets (textures, fonts, models), and all third-party sound
assets. To gain access to the companion files navigate to
http://fixbyproximity.com/Downloads/UnityBook.html

http://fixbyproximity.com/Downloads/UnityBook.html

HOUR 1
Introduction to Unity

What You’ll Learn in This Hour:
 How to install Unity
 How to create a new project or open an existing project
 How to use the Unity editor
 How to navigate inside the Unity Scene view

This hour focuses on getting you ready to rock and roll in the Unity environment. It
starts by looking at the different Unity licenses and then installing the one you choose.
This hour you’ll also learn how to create new projects as well as open existing ones.
You’ll open the powerful Unity editor and examine its various components. Finally,
you’ll learn to navigate a scene by using mouse controls and keyboard commands.
This lesson is meant to be hands-on, so download Unity while reading and follow
along.

Installing Unity
Before you can begin using Unity, you first need to download and install it. Software
installation is a pretty simple and straightforward process these days, and Unity is no
exception. Before you can install anything, though, you need to look at the three
available Unity license options: Unity Personal, Unity Plus, and Unity Pro. Unity
Personal is free and has everything you need to complete all the examples and projects
in this book. In fact, Unity Personal contains everything you need to make games
commercially, up to an annual revenue of $100,000! If you’re lucky enough to start
earning more than this, or you want to access the advanced features of Unity Plus or
Unity Pro (mainly aimed at teams), then you can always upgrade in the future.

NOTE

Unity Hub
At the time this book was published, a new method of accessing Unity installs and

creating projects was under way. Unity Hub acts as a centralized launcher for your
various projects. Unfortunately, it wasn’t quite ready to be included in this book,
but that doesn’t mean this lesson is useless. You can still install Unity and create
projects in the same manner as outlined in this hour if you’d like to. Even if you
decide to use Unity Hub, the concepts behind the installations and projects are
exactly the same. As the saying goes, “new packaging, same great taste!”

Downloading and Installing Unity
This lesson assumes that you are sticking with the Unity Personal license. If you
instead choose the Plus or Pro version, the process is very similar, only deviating when
it comes to choosing the license. When you are ready to begin downloading and
installing Unity, follow these steps:

1. Download the Unity installer from the Unity download page at
http://unity3d.com/get-unity/download and proceed to follow the instructions
to download the installer.

2. Run the installer and follow the prompts as you would with any other piece of
software.

3. When prompted, be sure to leave the Unity 2018 and Standard Assets check
boxes checked (see Figure 1.1). It is okay to install the example project and any
other platforms you may want to build to if you have space; doing so won’t
affect your experience of the book.

http://unity3d.com/get-unity/download

FIGURE 1.1
Choosing the components to install.

4. Choose an installation location for Unity. It is recommended to accept the
default unless you know what you are doing. Unity takes some time to
download, during which time you see a download screen (see Figure 1.2).

FIGURE 1.2
Be patient while Unity downloads.

5. If you already have a Unity account, you may be asked to log in with it. If you
don’t yet have a Unity account, follow the instructions to create one. Make sure
you have access to your email to verify your address. That’s it! Unity
installation is now complete.

NOTE

Supported Operating Systems and Hardware
To use Unity, you must be using a Windows PC or a Macintosh computer.
Although there is a version of the editor that runs on Linux machines, Linux is not
a directly supported OS. Your computer must also meet the minimum requirements
outlined here (taken from the Unity website at the time this book was published):

 Windows 7 SP1+, Windows 8, or Windows 10, 64-bit versions only; Mac OS
X 10.9+. Note that Unity was not tested on server versions of Windows and OS
X.
 Graphics card with DX9 (shader model 3.0) or DX11 with feature level 9.3
capabilities.
 A CPU that supports the SSE2 instruction set (most modern CPUs).

Note that these are minimum requirements.

NOTE

Internet Links
All Internet URLs in this book are current as of the time this book was published.
Web locations do change sometimes, though. If the material you are looking for is
no longer provided at the links listed, a good Internet search should turn up what
you are looking for.

Getting to Know the Unity Editor
Now that you have Unity installed, you can begin exploring the Unity editor. The
Unity editor is the visual component that enables you to build games in a “what you
see is what you get” fashion. Because most interaction you have is actually with the
editor, many people refer to it as simply Unity. This section examines all the different
elements of the Unity editor and how they fit together to make games.

The Project Dialog
When opening Unity for the first time, you see the Project dialog (see Figure 1.3). You
use this dialog to open recent projects, browse for projects that have already been
created, or start new projects.

FIGURE 1.3
The Project dialog (Windows version shown; the Mac version is similar).

If you have created a project in Unity already, whenever you open the editor, you are
taken directly to that project. To get back to the Project dialog, in Unity, select File >
New Project to get to the Create New Project dialog or select File > Open Project to
get to the Open Project dialog.

TIP

Opening the Project Dialog
You can choose whether you want Unity to open to the Project dialog or the last
opened project by going to Edit > Preferences (Unity > Preferences on a Mac)
and changing the value of the Load Previous Project on Startup check box.

 TRY IT YOURSELF

Creating Your First Project
You are ready to create a project. Pay special attention to where you save the
project so that you can find it easily later if necessary. Figure 1.4 shows the
dialog box you use to create the project. Follow these steps:

1. Open Unity and locate the New Project dialog. (If Unity opens to a project,
click File > New Project.)

2. Select a location for your project. I recommend that you create a folder
called Unity Projects to keep all your book projects together. If you are
unsure where to put your project, you can leave the default location.

3. Name your project Hour 1 TIY. Unity creates a folder with the same name
as the project, in the location specified in this dialog.

4. Leave 3D selected and ignore the Add Asset Package and Enable Unity
Analytics options for now.

5. Click Create Project.

FIGURE 1.4
The settings for your first project.

NOTE

2D, 3D, Packages, Analytics?
You might be wondering what the other options on the New Project dialog are for.
The 2D and 3D buttons allow you to select which type of game you are planning on
making. Don’t worry about picking the wrong one or being unsure. These just
control editor settings and can be changed at any time. The Add Asset Package
button allows you to add files that you commonly use in your projects into a new
project automatically. Finally, the Enable Unity Analytics option is a very powerful
tool that taps into Unity’s Analytics service. Using it allows you to generate data
about your game audience; while that is totally awesome for game developers, it
isn’t necessary for you at this time.

The Unity Interface
So far, you have installed Unity and looked at the Project dialog. Now it is time to dig
in and start playing around. When you open a new Unity project for the first time, you
see a collection of gray windows (called views), and everything is rather empty (see
Figure 1.5). Never fear; you will quickly get this place hopping. The following section
look at each of the unique views, one by one. First, though, let’s talk about the layout
as a whole.

FIGURE 1.5
The Unity interface.

For starters, Unity allows you to determine exactly how you want to work. Any of the
views can be moved, docked, duplicated, or changed. For instance, if you click the
word Hierarchy (on the left) to select the Hierarchy view and drag it over to the

Inspector (on the right), you can tab the two views together. You can also place your
cursor on any line between views and resize the windows. In fact, why don’t you take
a moment to play around and move things so that they are to your liking? If you end
up with a layout that you don’t much care for, you can quickly and easily switch back
to the built-in default view by going to Window > Layouts > Default Layout. While
you are playing around, go ahead and try out a few of the other layouts. (I’m a fan of
the Wide layout.) If you create a custom layout you like, you can save it by going to
Window > Layouts > Save Layout. (I used a custom layout called Pearson for the
writing of this book.) After you’ve saved a custom layout, if you accidentally change
the layout, you can always get it back.

NOTE

Finding the Right Layout
No two people are alike, and likewise, no two ideal layouts are alike. A good layout
will help you work on your projects and make things much easier for you. Be sure
to take the time to fiddle around with the layouts to find the one that works best for
you. You will be working a lot with Unity. It pays to set up your environment in a
way that is comfortable for you.

Duplicating a view is a fairly straightforward process as well. You can simply right-
click any view tab (such as Inspector in Figure 1.6), hover the mouse cursor over Add
Tab, and a list of views pops up for you to choose from (see Figure 1.6). You may
wonder why you would want to duplicate a view. Say that in your view-moving
frenzy, you accidentally closed the view. Re-adding the tab will give it back to you.
Also, consider the capability to create multiple Scene views. Each Scene view could
align with a specific element or axis within your project. If you want to see this in
action, check out the 4 Split built-in layout by going to Window > Layouts > 4 Split.
(If you created a layout that you like, be sure to save it before you check out 4 Split.)

FIGURE 1.6

Adding a new tab.

Now, without further ado, let’s look at the specific views themselves.

The Project View
Everything that has been created for a project (files, scripts, textures, models, and so
on) can be found in the Project view (see Figure 1.7). This is the window that shows
all the assets and organization of a project. When you create a new project, you see a
single folder item called Assets. If you go to the folder on your hard drive where you
save the project, you also find an Assets folder. This is because Unity mirrors the
Project view with the folders on the hard drive. If you create a file or folder in Unity,
the corresponding file or folder appears in the explorer (and vice versa). You can move
items in the Project view simply by dragging and dropping. This enables you to place
items inside folders or reorganize your project on-the-fly.

FIGURE 1.7
The Project view.

NOTE

Assets and Objects
An asset is any item that exists as a file in your Assets folder. All textures, meshes,
sound files, scripts, and so on are considered assets. In contrast, a game object is an
object that is part of a scene or a level. You can create assets from game objects,
and you can create game objects from assets.

CAUTION

Moving Assets

Unity maintains links between the various assets associated with projects. As a
result, moving or deleting items outside Unity could potentially cause problems. As
a general rule, it is a good idea to do all your asset management inside Unity.

When you click a folder in the Project view, the contents of the folder are displayed
under the Assets section on the right. As you can see in Figure 1.7, the Assets folder is
currently empty; therefore, nothing appears on the right. If you would like to create
assets, you can do so easily by clicking the Create drop-down menu. This menu
enables you to add all manner of assets and folders to a project.

TIP

Project Organization
Organization is extremely important in project management. As your projects get
bigger, the number of assets will grow, and eventually finding anything will be a
chore. You can help prevent a lot of frustration by employing some simple
organization rules:

 Every asset type (scenes, scripts, textures, and so on) should get its own folder.
 Every asset should be in a folder.
 If you use a folder inside another folder, make sure that the structure makes
sense. Folders should become more specific and should not be vague or
generalized.

Following these few simple rules will really make a difference.

The Favorites buttons enable you to quickly select all assets of a certain type. This
makes it possible for you to get an “at a glance” view of your assets quickly. When
you click one of the Favorites buttons (All Models, for instance) or perform a search
with the built-in search bar, you can narrow down the results between Assets and Asset
Store. If you click Asset Store, you can browse the assets that fit your search criteria
from the Unity Asset Store (see Figure 1.8). You can further narrow your results by
free and paid assets. This is a fantastic feature because it enables you to grab assets
that you need for your project without ever leaving the Unity interface.

FIGURE 1.8
Searching the Unity Asset Store.

The Hierarchy View
In many ways, the Hierarchy view (see Figure 1.9) is a lot like the Project view. The
difference is that the Hierarchy view shows all the items in the current scene instead of
the entire project. When you first create a project with Unity, you get the default scene,
which has just two items in it: Main Camera and Directional Light game objects. As
you add items to your scene, they appear in the Hierarchy view. Just like with the
Project view, you can use the Create menu to quickly add items to your scene, search
using the built-in search bar, and click and drag items to organize and “nest” them.

FIGURE 1.9
The Hierarchy view.

TIP

Nesting
Nesting is the term for establishing a relationship between two or more items. In the
Hierarchy view, clicking and dragging an item onto another item nests the dragged
item under the other one. This creates what is commonly known as a parent/child
relationship. In this case, the object on top is the parent, and any objects below it
are children. You can tell when an object is nested because it becomes indented. As
you will see later, nesting objects in the Hierarchy view can affect how they
behave.

TIP

Scenes
Scene is the term Unity uses to describe what you might already know as a level or
map. As you develop a Unity project, each collection of objects and behaviors
should be its own scene. Therefore, if you were building a game with a snow level
and a jungle level, those would be separate scenes. You will see the words scene
and level used interchangeably as you look for answers on the Internet.

TIP

Scene Organization
The first thing you should do when working with a new Unity project is create a
Scenes folder under Assets in the Project view. This way, all your scenes (or levels)
will be stored in the same place. Be sure to give your scenes descriptive names.
Scene1 may sound like a great name now, but when you have 30 scenes, such
unclear naming can get confusing.

The Inspector View
The Inspector view enables you to see all the properties of a currently selected item.
Simply click any asset or object from the Project or Hierarchy view, and the Inspector
view automatically propagates with information.
In Figure 1.10, you can see the Inspector view after the Main Camera object is selected
from the Hierarchy view.
Let’s break down some of this functionality:

 If you click the check box next to the object’s name, it becomes disabled and
does not appear in the project.

 Drop-down lists (such as the Layer and Tag lists; more on those later) are used
to select from a set of predefined options.

 Text boxes, drop-downs, and sliders can have their values changed, and the

changes are automatically and immediately reflected in the scene—even if the
game is running!

 Each game object acts like a container for different components (such as
Transform, Camera, and Audio Listener in Figure 1.10). You can disable these
components by unchecking them or remove them by right-clicking and
selecting Remove Component.

 Components can be added by clicking the Add Component button.

FIGURE 1.10
The Inspector view.

CAUTION

Changing Properties While Running a Scene
The capability to change the properties of an object and see those changes reflected
immediately in a running scene is very powerful. It enables you to tweak things like
movement speed, jumping height, collision power, and so on, all on-the-fly,
without stopping and starting the game. Be wary, though, as any changes you make
to the properties of an object while a scene is running are reverted when the scene
finishes. If you make a change and like the result, be sure to remember what it was

so you can set it again when the scene is stopped.

The Scene View
The Scene view is the most important view you work with because it enables you to
see your game visually as it is being built (see Figure 1.11). Using the mouse controls
and a few hotkeys, you can move around inside your scene and place objects where
you want them. This gives you an immense level of control.

FIGURE 1.11
The Scene view.

In a little bit, you will learn about moving around within a scene, but for now, let’s
focus on the controls that are part of the Scene view:

 Draw mode: This controls how the scene is drawn. By default, it is set to
Shaded, which means objects will be drawn with their textures in full color.
 2D/3D view: This control changes from a 3D view to a 2D view. Note that in
2D view, the scene gizmo (described later this hour) does not show.
 Scene lighting: This control determines whether objects in the Scene view are
lit by default ambient lighting or only by lights that actually exist within the
scene. The default is to include the built-in ambient lighting.
 Audition mode: This control sets whether an audio source in the Scene view
functions.
 Game overlay: This control determines whether items like skyboxes, fog, and

other effects appear in the Scene view.
 Gizmo selector: This control enables you to choose which gizmos—that is,
indicators that help with visual debugging or aid in setup—appear in the Scene
view. This control also determines whether the placement grid is visible.

 Scene gizmo: This control shows which direction you are currently facing and
aligns the Scene view with an axis.

NOTE

The Scene Gizmo
The scene gizmo gives you a lot of power over the Scene view. As you can see, the
control has X, Y, and Z indicators that align with the three axes. This makes it easy
to tell exactly which way you are looking in the scene. You will learn more about
axes and 3D space in Hour 2, “Game Objects.” The scene gizmo also gives you
active control over the scene alignment. If you click one of the gizmo’s axes, the
Scene view immediately snaps to that axis and gets set to a direction such as top or
left. Clicking the box in the center of the gizmo toggles between Iso and Persp
modes.
Iso, which stands for isometric, is the 3D view with no perspective applied. Persp,
which stands for perspective, is the 3D view with perspective applied. Try it out for
yourself and see how it affects the Scene view. You’ll notice that the icon changes
from parallel lines for isometric to diverging lines like crow’s feet for perspective.

The Game View
The last view to go over is the Game view. Essentially, the Game view allows you to
“play” the game inside the editor by giving you a full simulation of the current scene.
All elements of a game function in the Game view just as they would if the project
were fully built. Figure 1.12 shows what a Game view looks like. Note that although
the Play, Pause, and Step buttons are not technically a part of the Game view, they
control the Game view and therefore are included in the image.

FIGURE 1.12
The Game view.

TIP

Missing Game View
If you find that the Game view is hidden behind the Scene view or that the Game
view tab is missing entirely, don’t worry. As soon as you click the Play button, a
Game view tab appears in the editor and begins displaying the game.

The Game view comes with some controls that assist with testing games:
 Play: The Play button enables you to play the current scene. All controls,
animations, sounds, and effects are present and working. Once a game is
running, it should behave very closely to how it would behave if it were
actually being run in a standalone player (such as on your PC or mobile
device). To stop the game from running, click the Play button again.

 Pause: The Pause button pauses the execution of the currently running Game
view. The game maintains its state and continues exactly where it was when
paused. Clicking the Pause button again causes the game to continue running.

 Step: The Step button works while the Game view is paused and causes the
game to execute a single frame of the game. This effectively allows you to
“step” through the game slowly and debug any issues you might have. Clicking
the Step button while the game is running causes the game to pause.

 Aspect drop-down: From this drop-down menu, you can choose the aspect
ratio you want for the Game view window while running. The default is Free
Aspect, but you can change this to match the aspect ratio of the target platform
you are developing for.
 Maximize on Play: This button determines whether the Game view takes up
the entirety of the editor when run. By default, this is off, and a running game
is only the size of the Game view tab.
 Mute Audio: This button turns off the sounds when playing the game. This is
handy when the person sitting next to you is getting tired of hearing your
repeated play-testing!
 Stats: This button determines whether rendering statistics are displayed on the
screen while the game is running. These statistics can be useful for measuring
the efficiency of a scene. The stats are turned off by default.
 Gizmos: This is both a button and a drop-down menu. The button determines
whether gizmos are displayed while the game is running. Game view gizmos
are not displayed by default. The drop-down menu (the small arrow) on this
button determines which gizmos appear if gizmos are turned on.

NOTE

Running, Paused, and Off
It can be difficult at first to determine what is meant by the terms running, paused,
and off. When the game is not executing in the Game view, the game is said to be
off. When a game is off, the game controls do not work, and the game cannot be
played. When the Play button is pressed and the game begins executing, the game
is said to be running. Playing, executing, and running all mean the same thing. If
the game is running and the Pause button is pressed, the game stops running but
still maintains its state. At this point, the game is paused. The difference between a
paused game and an off game is that a paused game resumes execution at the point
at which it was paused, whereas an off game begins executing at the beginning.

Honorable Mention: The Toolbar
Although not a view, the toolbar is an essential part of the Unity editor. Figure 1.13
shows the toolbar components:

 Transform tools: These buttons enable you to manipulate game objects and
are covered in greater detail later in this book. Pay special attention to the
button that resembles a hand. This is the Hand tool, and it is described later this
hour.
 Transform gizmo toggles: These toggles allow you to manipulate how gizmos
appear in the Scene view. Leave them alone for now.
 Game view controls: These buttons control the Game view.

 Account and Services controls: These buttons allow you to manage the Unity
account you are using as well as the services you are using in your project.
 Layers drop-down: This menu determines which object layers appear in the
Scene view. By default, everything appears in the Scene view. Leave this alone
for now. Layers are covered in Hour 5, “Lights and Cameras.”
 Layout drop-down: This menu allows you to quickly change the layout of the
editor.

FIGURE 1.13
The toolbar.

Navigating the Unity Scene View
The Scene view gives you a lot of control over the construction of a game. The ability
to place and modify items visually is very powerful. None of this is very useful,
though, if you cannot move around inside the scene. This section covers a couple
different ways to change your position and navigate the Scene view.

TIP

Zoom
Regardless of what method you are using for navigation, scrolling the mouse wheel
always zooms the view within a scene. By default, the scene zooms in and out of
the center of the Scene view. If you hold Alt while scrolling, however, you zoom in
and out of wherever the mouse is currently pointing. Go ahead and give it a try!

The Hand Tool
The Hand tool (hotkey: Q) provides a simple way to move about the Scene view with
the mouse (see Figure 1.14). This tool is especially useful if you are using a mouse
with only a single button (because other methods require a two-button mouse). Table
1.1 briefly explains each of the Hand tool controls. (Don’t worry about the other
buttons next to the Hand tool yet. They are covered a little bit later.)

FIGURE 1.14
The Hand tool.

TABLE 1.1 The Hand Tool Controls

Action Effect

Click-drag Drags the camera around the scene

Hold Alt and click-drag Orbits the camera around the current
pivot point

Hold Ctrl (Command on Mac) and right-
click-drag

Zooms the camera

You can find all the Unity hotkeys at
http://docs.unity3d.com/Manual/UnityHotkeys.html.

CAUTION

Different Cameras
When working in Unity, you deal with two types of cameras. The first is the
standard game object camera. You can see that you already have one in your scene
(by default). The second type is more of an imaginary camera than a camera in the
traditional sense. It is what determines what you can see in the Scene view. When
this hour’s instructions mention the camera, it is talking about the second type. You
do not actually manipulate the game object camera.

Flythrough Mode
Flythrough mode enables you to move about the scene using a traditional first-person
control scheme. This mode feels like home for anyone who plays first-person games
(such as first-person shooters). If you don’t play those games, this mode might take a
little getting used to. Once you become familiar with it, though, it will be second
nature.
Holding down the right mouse button while your mouse cursor is over the Scene view
puts you into Flythrough mode. All the actions laid out in Table 1.2 require that the
right mouse button be held down.

TABLE 1.2 Flythrough Mode Controls

Action Effect

Move the mouse Causes the camera to pivot, which gives the feeling of
“looking around” within the scene.

Press the WASD keys The WASD keys move you about the scene. Each key
corresponds with a direction: forward, left, back, and right,
respectively.

Press the QE keys The QE keys move you up and down, respectively, within
the scene.

Hold Shift while Has the same effect as using the WASD or QE keys but

http://docs.unity3d.com/Manual/UnityHotkeys.html

pressing the WASD or
QE keys

much faster. Consider Shift to be your “sprint” button.

TIP

Snap Controls
You have many ways to attain precise control over scene navigation. Sometimes,
you just want to quickly get around the scene, though. For times like these, it is
good to use what I call snap controls. If you want to quickly navigate to, and zoom
in on, a game object in a scene, you can do so by highlighting the object in the
Hierarchy view and pressing F (short for Frame Select). The scene then “snaps” to
that game object. You can also achieve the same effect by double-clicking any
object in the Hierarchy view. Another snap control is one you have seen already:
The scene gizmo allows you to quickly snap the camera to any axis. This way, you
can see an object from any angle without having to manually move the scene
camera around. Be sure to practice using the snap controls, and navigating through
your scene quickly will become a snap!

TIP

Additional Learning
When using the New Project or Open Project dialog, your eyes may have magically
been draw to the Learn button present there (see Figure 1.15). Clicking that button
displays Unity’s new learning resources. These resources are a fantastic
augmentation and are well worth your time if you’d like even more practice getting
to know the basics of the Unity engine. (I am a little biased: I helped make them.)

FIGURE 1.15

The Learn section of the Project dialog.

Summary

In this hour, you took your first look at the Unity game engine. You started off by
downloading and installing Unity. From there, you learned how to open and create
projects. Then you learned about all the different views that make up the Unity editor.
You also learned how to navigate around the Scene view.

Q&A
Q. Are assets and game objects the same?
A. Not exactly. The big difference is that an asset has a corresponding file or group

of files on the hard drive, whereas a game object does not. An asset may or may
not contain a game object.

Q. There are a lot of different controls and options. Do I need to memorize
them all right away?

A. Not at all. Most controls and options are already set to default states that cover
most situations. As your knowledge of Unity grows, you will continue to learn
more about the different controls available to you. This lesson is just meant to
show you what’s there and to give you a bit of familiarity.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. True or False: You must purchase Unity Pro to make commercial games.
2. Which view enables you to manipulate objects in a scene visually?
3. True or False: You should always move your asset files around within Unity and

not use the operating system’s file explorer.
4. True or False: When creating a new project, you should include every asset that

you think is awesome.
5. What mode do you enter in the Scene view when you hold down the right mouse

button?

Answers
1. False. You can make games with Unity Personal or Unity Plus.

2. Scene view
3. True. This helps Unity keep track of the assets.
4. False. This takes up space and slows down your project.
5. Flythrough mode

Exercise
Take a moment to practice the concepts presented in this hour. It is important to have a
strong foundational understanding of the Unity editor because everything you will
learn from here on out will utilize it in some way. To complete this exercise, do the
following:

1. Create a new scene by going to File > New Scene or by pressing Ctrl+N
(Command+N on a Mac).

2. Create a folder in the Project view by right-clicking Assets and selecting Create
> Folder. Name the folder Scenes.

3. Save your scene by going to File > Save Scene or by pressing Ctrl+S
(Command+S on a Mac). Be sure to save the scene in the Scenes folder you
created and give it a descriptive name.

4. Add a cube to your scene. You can do this in one of three ways.
 Click the GameObject menu at the top of the editor and select 3D
Object > Cube.

 Click Create > 3D Object > Cube in the Hierarchy view.
 Right-click in the Hierarchy view and select 3D Object > Cube.

5. Select the newly added cube in the Hierarchy view and experiment with its
properties in the Inspector view.

6. Practice navigating around the Scene view by using Flythrough mode, the Hand
tool, and snap controls. Use the cube as a point of reference to help navigate.

HOUR 2
Game Objects

What You’ll Learn in This Hour:
 How to work with 2D and 3D coordinates
 How to work with game objects
 How to work with transforms

Game objects are the foundational components of a Unity game project. Every item
that exists in a scene is, or is based on, a game object. In this hour, you’ll learn about
game objects in Unity. Before you can start working with objects in Unity, however,
you must learn about the 2D and 3D coordinate systems. After you learn about those
systems in this hour, you will begin working with the built-in Unity game objects, and
you will wrap up the hour by learning about the various game object transformations.
Information gained in this hour is foundational to everything else in this book. Be sure
to take your time and learn it well.

Dimensions and Coordinate Systems
For all their glitz and glamour, video games are mathematical constructs. All the
properties, movements, and interactions can be boiled down to numbers. Luckily for
you, a lot of the groundwork has already been laid. Mathematicians have been toiling
away for centuries to discover, invent, and simplify different processes, and all their
work means you can more easily build games with modern software. You may think
the objects in a game just exist in space randomly, but really every game space has
dimensions, and every object is placed in a coordinate system (or grid).

Putting the D in 3D
As mentioned previously, every game uses some level of dimensions. The most
common dimension systems, the ones you are most likely familiar with, are 2D and 3D
(short for two-dimensional and three-dimensional). A 2D system is a flat system. In a
2D system, you deal only with vertical and horizontal elements (or, to put it another

way: up, down, left, and right). Games like Tetris, Pong, and Pac Man are good
examples of 2D games. A 3D system is like a 2D system, but it obviously has one
more dimension. In a 3D system, you have not only horizontal and vertical (up, down,
left, and right) but also depth (in and out). Figure 2.1 does a good job of illustrating the
differences between a 2D square and a 3D square, otherwise known as a cube. Notice
how the inclusion of the depth axis in the 3D cube makes it seem to “pop out.”

FIGURE 2.1
2D square versus 3D cube.

NOTE

Learning About 2D and 3D
Unity is a 3D engine. Therefore, all the projects made with it inherently use all
three dimensions. The real secret is that there is no such thing as a true 2D game
anymore. Modern hardware renders everything as 3D. 2D games still have the z
axis but just don’t use it. You might be wondering why this book bothers to cover
2D systems at all. The truth is that even in 3D projects, there are still a lot of 2D
elements. Textures, screen elements, and mapping techniques all use a 2D system.
Unity has a powerful set of tools to work with 2D games, and 2D systems aren’t
going away anytime soon.

Using Coordinate Systems
The mathematical equivalent of a dimension system is a coordinate system. A
coordinate system uses a series of lines, called axes (the plural of axis), and locations,
called points. These axes correspond directly with the dimensions they mimic. For
instance, a 2D coordinate system has the x axis and y axis, which represent the
horizontal and vertical directions, respectively. If an object is moving horizontally, we
say it is moving “along the x axis.” Likewise, the 3D coordinate system uses the x

axis, the y axis, and the z axis for horizontal, vertical, and depth movement and
positioning, respectively.

NOTE

Common Coordinate Syntax
When referring to an object’s position, you generally list its coordinates. Saying
that an object is 2 on the x axis and 4 on the y axis can be a little cumbersome.
Luckily, a shorthand way of writing coordinates exists. In a 2D system, you write
coordinates like (x, y), and in a 3D system, you write them like (x, y, z). Therefore,
for an object that is 2 on the x axis and 4 on the y axis, you simply write (2, 4). If
that object were also 10 on the z axis, you would write (2, 4, 10).

Every coordinate system has a point at which all the axes intersect. This point is called
the origin, and the coordinates for the origin are always (0, 0) in a 2D system and (0, 0,
0) in a 3D system. This origin point is very important because it is the basis from
which all other points are derived. The coordinates for any other point are simply the
distance of that point from the origin along each axis. A point’s coordinates get larger
as it moves away from the origin. For example, as a point moves to the right, its x axis
value gets larger. When it moves left, the x axis value gets smaller until it passes
through the origin. At that time, the x value of the point begins getting larger again, but
it also becomes negative. Consider Figure 2.2. This 2D coordinate system has three
points defined. The point (2, 2) is 2 units away from the origin in both the x and the y
directions. The point (–3, 3) is 3 units to the left of the origin and 3 units above the
origin. The point (2, –2) is 2 units to the right of the origin and 2 units below the
origin.

FIGURE 2.2
Points in relation to the origin.

World Versus Local Coordinates
You have now learned about the dimensions of a game world and about the coordinate
systems that compose them. What you have been working with so far is considered the
world coordinate system. At any given time, there is only a single x axis, a single y
axis, and a single z axis in the world coordinate system. Likewise, there is only one
origin that all objects share. What you might not know is that there is also something
called the local coordinate system. This system is unique to each object, and it is
completely separate from the local coordinate systems of other objects. This local
system has its own axes and origin that other objects don’t use. Figure 2.3 illustrates
the world versus local coordinate systems by showing the four points that make up a
square for each.

FIGURE 2.3
World coordinates (left) versus local coordinates (right).

You might be wondering what the local coordinate system is for if the world
coordinate system is used for the positions of objects. Later in this hour, you will look
at transforming game objects and at parenting game objects. Both of these require the
local coordinate system.

Game Objects
All shapes, models, lights, cameras, particle systems, and so on in a Unity game have
one thing in common: They are all game objects. The game object is the fundamental
unit of any scene. Even though they are simple, game objects are very powerful. At
their root, game objects are little more than transforms (discussed in greater detail later
in the hour) and containers. The container part of a game object exists to hold the
various components that make the object more dynamic and meaningful. What you
add to your game objects is up to you. There are many components, and they add a
huge amount of variety. Throughout the course of this book, you will be learning to
use many of these components.

NOTE

Built-in Objects
Not every game object you use will start as an empty object. Unity has several
built-in game objects available to use right out of the box. You can see the many
items available by clicking the GameObject menu item at the top of the Unity
editor. A large portion of learning to use Unity is learning to work with built-in and
custom game objects.

 TRY IT YOURSELF

Creating Some Game Objects
Let’s take some time now to work with game objects. Follow these steps to
create a few basic objects and examine their different components:

1. Create a new project or create a new scene in an existing project.

2. Add an empty game object by clicking the GameObject menu item and
selecting Create Empty. (Note that you could also create an empty game
object by pressing Ctrl+Shift+N on a PC or Command+Shift+N on a
Mac.)

3. Look in the Inspector view and notice that the game object you just created
has no components other than a transform. (Every game object has a
transform.) Click the Add Component button in the Inspector to see all the
components you could add to the object. Don’t select any components at this
time.

4. Add a cube to your project by clicking the GameObject menu item,
hovering the cursor over 3D Object, and selecting Cube from the list.

5. Notice the various components the cube has that the empty game object
doesn’t. The mesh components make the cube visible, and the collider makes
it able to interact with other objects on a physical level.

6. Add a point light to your project by clicking the Create drop-down in the
Hierarchy view and selecting Light > Point Light from the list.

7. Notice that the point light only shares the transform component with the
cube. It is focused entirely on emitting light. The light emitted by this point
light adds to the directional light already in the scene.

Transforms
So far in this hour, you have learned and explored the different coordinate systems and
experimented with some game objects. It is time to put the two together. When dealing
with 3D objects, you often hear the term transform. Depending on the context,
transform is either a noun or a verb. All objects in 3D space have a position, a rotation,
and a scale. If you combine them, you get an object’s transform (noun). Alternatively,
transform can be a verb if it refers to changing an object’s position, rotation, or scale.
Unity combines the two meanings of the word with the transform component.
Recall that the transform component is the only component that every game object has
to have. Even empty game objects have transforms. Using this component, you can
both see the current transform of the object and change (or transform) the transform of
the object. It might sound confusing now, but it is fairly simple. You will get the hang
of it in no time. Because the transform is made up of the position, rotation, and scale, it
stands to reason that there are three separate methods (called transformations) of

changing the transform: translation, rotation, and scaling. These transformations can be
achieved using either the Inspector or the transform tools. Figures 2.4 and 2.5 illustrate
which Inspector components and tools correlate with the various transforms.

FIGURE 2.4
Transform options in the Inspector.

FIGURE 2.5
The transform tools.

TIP

Check Yourself Before You Rect Yourself
The term Rect (short for rectangle) can often be seen in conjunction with 2D game
objects. For instance, while 2D objects like sprites have the same type of transform
as 3D objects, you can use the simpler Rect tool to control their position, rotation,
and scale all at once. (Refer to Figure 2.5 for the location of the Rect tool.)
Furthermore, user interface (UI) objects in Unity have a different type of transform
called a Rect transform. Hour 14, “User Interfaces,” covers this in more detail; for
now, just understand that they are the 2D equivalent of the normal transform that is
used exclusively for UI.

Translation
The process of changing the coordinate position of an object in a 3D system is called
translation, and it is the simplest transform you can apply to an object. When you
translate an object, it is shifted along an axis. Figure 2.6 demonstrates a square being
translated along the x axis.

FIGURE 2.6
Sample translation.

When you select the Translate tool (hotkey: W), whatever object you have selected
changes slightly in the Scene view. More specifically, you see three arrows appear,
pointing away from the center of the object along the three axes. These are translation
gizmos, and they help you move your objects around in the scene. Clicking on and
holding any of these axis arrows causes them to turn yellow. Then, if you move your
mouse, the object moves along that axis. Figure 2.7 shows what the translation gizmos
look like. Note that the gizmos appear only in the Scene view.

FIGURE 2.7
Translation gizmos.

TIP

The Transform Component and Transform Tools
Unity provides two ways to manage the transforms of your objects. Knowing when
to use each is important. When you change an object’s transform in the Scene view
with a transform tool, the transform data also changes in the Inspector view. It is
often easier to make large changes to an object’s transform using the Inspector
view because you can just change the values to what they need to be. The transform
tools, however, are more useful for quick, small changes. Learning to use both
together will greatly improve your workflow.

Rotation
Rotating an object does not move it in space. Instead, it changes the object’s
relationship to that space. More simply stated, rotation enables you to redefine which
directions the x, y, and z axes point for a particular object. When an object rotates
around an axis, it is said to be rotating about that axis. Figure 2.8 shows a square being
rotated about the z axis.

FIGURE 2.8
Rotation about the z axis.

TIP

Determining the Axis of Rotation
If you are unsure which axis you need to rotate an object about to get a desired
effect, you can use a simple mental method. One axis at a time, pretend that the
object is stuck in place by a pin that is parallel with that axis. The object can only

spin around the pin stuck in it. Now, determine which pin allows the object to spin
the way you want. That is the axis you need to rotate the object about.

Just as with the Translate tool, selecting the Rotate tool (hotkey: E) causes rotation
gizmos to appear around your object. These gizmos are circles representing the
object’s rotation path about the axes. Clicking and dragging on any of these circles
turns it yellow and allows you to rotate the object about that axis. Figure 2.9 shows
what the rotation gizmos look like.

FIGURE 2.9
The Rotate tool gizmos.

Scaling
Scaling causes an object to grow or shrink within a 3D space. This transform is really
straightforward and simple to use. Scaling an object on any axis causes its size to
change on that axis. Figure 2.10 demonstrates a square being scaled down on the x and
y axes. Figure 2.11 shows what the scaling gizmos look like when you select the
Scaling tool (hotkey: r).

FIGURE 2.10
Scaling on the x and y axes.

FIGURE 2.11
The scaling gizmos.

Hazards of Transformations
As mentioned earlier in this hour, transformations use the local coordinate system.
Therefore, the changes that are made can potentially impact future transformations.
For example, in Figure 2.12, notice how the same two transformations, when applied

in reverse order, have very different effects.

FIGURE 2.12
Effects of transformation order.

As you can see, not paying attention to transformation order can have unexpected
consequences. Luckily, the transformations have consistent effects that can be planned
on:

 Translation: Translation is a fairly inert transformation. This means that any
changes applied after it generally are not affected.

 Rotation: Rotation changes the orientation of the local coordinate system axes.
Any translations applied after a rotation cause the object to move along the
new axes. If you were to rotate an object 180 degrees about the z axis, for
example, and then move in the positive y direction, the object would appear to
be moving down instead of up.

 Scaling: Scaling effectively changes the size of the local coordinate grid.
Basically, when you scale an object to be larger, you are really scaling the local
coordinate system to be larger. This causes the object to seem to grow. This
change is multiplicative. For example, if an object is scaled to 1 (its natural,
default size) and then translated 5 units along the x axis, the object appears to
move 5 units to the right. If the same object were to be scaled to 2, however,
then translating 5 units on the x axis would result in the object appearing to
move 10 units to the right. This is because the local coordinate system is now
double the size, and 5 times 2 equals 10. Inversely, if the object were scaled to
.5 and then moved, it would appear to move only 2.5 units (.5 × 5 = 2.5).

Once you understand these rules, determining how an object will change with a set of
transformations is easy. These effects depend on whether you have Local or Global
selected, and they take some getting used to, so it is a good idea to experiment.

TIP

All Tools at Once
The last scene tool on the toolbar is a new Composite tool (hotkey: y). This tool

allows you to translate, rotate, and scale a 3D object all at once.

Gizmo Positions
The gizmo placement options can be very confusing for a new user who doesn’t know
what they do. Effectively, these options control the position and alignment of the
transform gizmos in the scene view. Check out Figure 2.13 to see how the alignment
of the translate gizmos changes depending on whether you have the option set to Local
or Global coordinate space.
In addition, see Figure 2.14 to learn how the placement of the gizmos changes when
you have multiple objects selected. With the Pivot option selected, the gizmos function
centers on the first object selected. With the Center option selected, the gizmos are
placed and function in the center of all of the selected objects.

FIGURE 2.13
The alignment of the gizmos for Local versus Global.

FIGURE 2.14
The position of the gizmos for Pivot versus Center.

Generally speaking, you should keep your gizmos set to Pivot and Local to avoid
confusion and to make your day-to-day work in Unity easier.

Transforms and Nested Objects
In Hour 1, “Introduction to Unity,” you learned how to nest game objects in the
Hierarchy view (by dragging one object onto another one). Recall that when you have
an object nested inside another one, the top-level object is the parent, and the other
object is the child. Transformations applied to the parent object work as normal. The
object can be moved, scaled, and rotated. What’s special is how the child object
behaves. Once nested, a child object’s transform is relative to that of the parent object
—not relative to the world. Therefore, a child object’s position is not based on its
distance from the origin but the distance from the parent object. If the parent object is
rotated, the child object moves with it. If you looked at the child’s rotation, however, it
would not register that it had rotated at all. The same goes for scaling. If you scale the
parent object, the child also changes in size. The scale of the child object remains
unchanged. You might be confused by this. Remember that when a transformation is
applied, it is not applied to the object but to the object’s coordinate system. An object
isn’t rotated; its coordinate system is rotated. The effect is that the object seems to
turn. When a child object’s coordinate system is based on the local coordinate system
of the parent, any changes to the parent system directly change the child (without the
child knowing about it).

Summary
In this hour, you have learned all about game objects in Unity. You started off by
learning all about the differences between 2D and 3D. From there, you looked at the
coordinate system and how it breaks down the “world” concepts mathematically. You
then began working with game objects, including some of the built-in ones. You ended
by learning about transforms and the three transformations. You got to try out the
transforms, learn about some of the hazards, and see how transforms affect nested
objects.

Q&A
Q. Is it important to learn both the 2D and the 3D concepts?
A. Yes. Even games that are entirely 3D still use some of the 2D concepts on a

technical level.

Q. Should I learn to use all the built-in game objects right away?
A. Not necessarily. There are many game objects, and it can be overwhelming to

attempt to learn them all right away. Take your time and learn about the objects
as they are covered here.

Q. What is the best way to get familiar with transforms?
A. Practice. Keep working with them; eventually, they will become quite natural.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. What does the D in 2D and 3D stand for?
2. How many transformations are there?
3. True or False: Unity has no built-in objects, and you must create your own.
4. Say you have an object at (0, 0, 0). What is its new position if you move it 1 unit

on the x axis and then rotate it 90 degrees about the z axis? What if, instead, you
rotated it before moving it?

Answers
1. Dimension
2. Three
3. False. Unity provides many built-in objects.
4. Moving and then rotating results in a position of (1, 0, 0). Rotating and then

moving results in a position of (0, 1, 0). If this is confusing to you, be sure to
revisit the section “Hazards of Transformations” in this hour.

Exercise
Take a moment to experiment with the way transformations work in a parent/child
object scenario. You will get a better feel for exactly how the coordinate systems
change the way things are oriented.

1. Create a new scene or a project.
2. Add a cube to the scene and place it at (0, 2, –5). Remember the shorthand

notation for coordinates: The cube you add should have an x value of 0, a y value
of 2, and a z value of –5. You can set these values easily in the transform
component in the Inspector view.

3. Add a sphere to your scene. Pay attention to the sphere’s x, y, and z values.
4. Nest the sphere under the cube by dragging the sphere onto the cube in the

Hierarchy view. Notice how the position values changed. The sphere is now

located relative to the cube.
5. Place the sphere at (0, 1, 0). Notice how it doesn’t go to right above the origin

and instead sits right above the cube.
6. Experiment with the various transformations. Be sure to try them on the cube as

well as the sphere and see how differently they behave for a parent than for a
child object.

HOUR 3
Models, Materials, and Textures

What You’ll Learn in This Hour:
 The fundamentals of models
 How to import custom and premade models
 How to work with materials and shaders

In this hour, you’ll learn all about models and how they are used in Unity. You’ll start
by looking at the fundamental principles of meshes and 3D objects. From there, you’ll
learn how to import your own models or use ones acquired from the Asset Store.
You’ll finish this hour by examining Unity’s material and shader functionality.

The Basics of Models
Video games wouldn’t be very video without the graphical components. In 2D games,
the graphics consist of flat images called sprites. In 2D games, all you need to do is
change the x and y positions of sprites and flip several of them in sequence, and the
viewer’s eye is fooled into believing that it sees true motion and animation. In 3D
games, however, things aren’t so simple. In worlds with a third axis, objects need to
have volume to fool the eye. Games use a large number of objects; therefore, they need
to process things quickly. Meshes make that possible. A mesh, at its most simple, is a
series of interconnected triangles. These triangles build off each other in strips to form
basic to very complex objects. These strips provide the 3D definitions of a model and
can be processed very quickly. Don’t worry, though: Unity handles all this for you so
that you don’t have to manage it yourself. Later in this hour, you’ll see just how
triangles can make up various shapes in the Unity Scene view.

NOTE

Why Triangles?
You might be wondering why 3D objects are made up entirely of triangles. The
answer is simple: Computers process graphics as a series of points, otherwise

known as vertices. The fewer vertices an object has, the faster it can be drawn.
Triangles have two properties that make them desirable. The first is that whenever
you have a single triangle, you need only one more vertex to make another. So to
make one triangle, you need three vertices, to make two triangles you need only
four, and to make three triangles you need only five. This makes triangles very
efficient. The second property that makes triangles desirable is that by making
strips of triangles, you can model any 3D object. No other shape affords you that
level of flexibility and performance.

NOTE

Terminology: Model or Mesh?
The terms model and mesh are similar, and you can often use them interchangeably.
There is a difference, however. A mesh contains all the points and lines that define
the 3D shape of an object. When you refer to the shape or form of a model, you are
really referring to a mesh. A mesh can also be called a model’s geography, or its
geo. A model, therefore, is an object that contains a mesh.
A model has a mesh to define its dimensions, but it can also contain animations,
textures, materials, shaders, and other meshes. A good general rule is this: If the
item in question contains anything other than vertex information, it is a model;
otherwise, it is a mesh.

NOTE

What About 2D?
This hour covers a lot of information about rendering 3D objects. While that is
useful, what if you only want to make 2D games? Should you still bother with this
lesson (or any others that don’t cover 2D)? Of course! As mentioned in Hour 2,
“Game Objects,” there aren’t really 2D games anymore. Sprites are just textures
applied to flat 3D objects. Lighting can be applied to 2D objects. Even the cameras
used for 2D and 3D games are identical. All the concepts learned here can be
applied directly to your 2D games because 2D games are really 3D games. As you
practice more with Unity, you will quickly come to see that the line between 2D
and 3D is very blurred indeed!

Built-in 3D Objects
Unity comes with a few basic built-in meshes (or primitives) for you to work with.
They tend to be simple shapes that serve simple utilities or can be combined to make
more complex objects. Figure 3.1 shows the available built-in meshes. (You worked
with the cube and sphere in the previous hours.)

FIGURE 3.1
The built-in meshes in Unity.

TIP

Modeling with Simple Meshes
Do you need a complex object in your game but can’t find the right type of model
to use? By nesting objects in Unity, you can easily make simple models using the
built-in meshes. Just place the meshes near each other so that they form the rough
look you want. Then nest all the objects under one central object. This way, when
you move the parent, all the children move, too. This might not be the prettiest way
to make models for a game, but it will do in a pinch and is useful for prototyping!

Importing Models
Having built-in models is nice, but most of the time your games will require art assets
that are a little more complex. Thankfully, Unity makes it rather easy to bring your
own 3D models into your projects. Just placing a file containing a 3D model in your

Assets folder is enough to bring it into the project. From there, you can drag it into the
scene or hierarchy to build a game object around it. Natively, Unity supports .fbx, .dae,
.3ds, .dxf, and .obj files. This enables you to work with just about any 3D modeling
tool.

 TRY IT YOURSELF

Importing Your Own 3D Model
Follow these steps to bring a custom 3D modes into a Unity project:

1. Create a new Unity project or scene.

2. In the Project view, create a new folder named Models under the Assets
folder by right-clicking the Assets folder and selecting Create > Folder.

3. Locate the Torus.fbx file provided for you in the Hour 3 folder of the book
files.

4. With the operating system’s file browser and the Unity editor open and side-
by-side, click and drag the Torus.fbx file from the file browser into the
Models folder that you created in step 2. In Unity, click the Models folder to
see the new Torus file. If you do this correctly, your Project view should
resemble Figure 3.2. (Note: If you are using an earlier version of Unity or
have changed your editor settings, you may also have a Materials folder
automatically created. If this is the case, it is not a problem. Materials are
discussed in greater detail later in this hour.)

FIGURE 3.2
The Project view after the Torus model is added.

5. Drag the Torus asset from the Models folder onto the Scene view. Notice
how a Torus game object is added to the scene containing a mesh filter and
mesh renderer. These allow the Torus to be drawn to the screen.

6. Currently the torus in the scene is very small, so select the Torus asset in the
project view and look at the Inspector view. Change the value of the scale

factor from 1 to 100 and click the Apply button at the bottom right of the
Inspector.

CAUTION

Default Scaling of Meshes
Most of the Inspector view options for meshes are advanced and are not covered
right now. The property you are interested in is the scale factor. 3D software deals
in generic units, and each software can use a different scale for units. By default,
Unity treats one generic unit as one meter; another software, such as Blender, might
treat one unit as a centimeter. Normally when you import a model, based on the file
type, Unity can guess the scale at which to import. Sometimes, however (as in this
case), this doesn’t work, and you can fine-tune it with the scale factor. By changing
the value of the scale factor from 1 to 100, you are telling Unity to import the
model 100 times larger, which converts the centimeters of the model into the
meters of Unity.

Models and the Asset Store
You don’t have to be an expert modeler to make games with Unity. The Asset Store
provides a simple and effective way to find premade models and import them into your
projects. Generally speaking, models in the Asset Store are either free or paid and
come alone or in a collection of similar models. Some of the models come with their
own textures, and some of them are simply the mesh data.

 TRY IT YOURSELF

Downloading Models from the Asset Store
Let’s look at how to find and download models from Unity’s Asset Store.
Follow these steps to acquire a model named Robot Kyle and import it into your
scene:

1. Create a new scene (by selecting File > New Scene). In the Project view,
type Robot Kyle t: Model in the search bar (see Figure 3.3).

FIGURE 3.3
Locating a model asset.

2. In the search filter section, click the Asset Store button (refer to Figure 3.3).
If these words aren’t visible, you may need to resize your editor window or
Project view window. You also need to be connected to the Internet.

3. Locate Robot Kyle, published by Unity Technologies. You can see the
publisher by clicking on an asset and checking the Inspector view (see
Figure 3.4).

FIGURE 3.4
The asset Inspector view.

4. In the Inspector view, click Import Package. At this point, you may be

prompted to provide your Unity account credentials. In case you have
trouble with this, I have also provided the file in this hour’s book files as a
Unity package; simply double-click it to import it.

5. When the Importing Package dialog opens, leave everything checked and
click Import.

6. Locate the robot model under Assets\Robot Kyle\Model and drag it into the
Scene view. Note that the model will be fairly small in the Scene view; you
might need to move closer to see it.

Textures, Shaders, and Materials
Applying graphical assets to 3D models can be daunting for beginners who are not
familiar with the process. Unity uses a simple and specific workflow that gives you a
lot of power in determining exactly how you want things to look. Graphical assets are
broken down into textures, shaders, and materials. Each of these is covered
individually in its own section, and Figure 3.5 shows how they fit together. Notice that
textures are not applied directly to models. Instead, textures and shaders are applied to
materials. Those materials are in turn applied to the models. This way, the look of a
model can be swapped or modified quickly and cleanly without a lot of work.

FIGURE 3.5
The model asset workflow.

Textures
Textures are flat images that get applied to 3D objects. They are responsible for
models being colorful and interesting instead of blank and boring. It can be strange to
think that a 2D image can be applied to a 3D model, but it is a fairly straightforward
process once you are familiar with it. Think about a soup can for a moment. If you

were to take the label off the can, you would see that it is a flat piece of paper. That
label is like a texture. After a label is printed, it is wrapped around a 3D can to provide
a more pleasing look.
Just as with all other assets, adding textures to a Unity project is easy. Start by creating
a folder for your textures; a good name would be Textures. Then drag any textures you
want in your project into the Textures folder you just created. That’s it!

NOTE

That’s an Unwrap!
Imagining how textures wrap around cans is fine, but what about more complex
objects? When creating an intricate model, it is common to generate something
called an unwrap. The unwrap is somewhat akin to a map that shows exactly how a
flat texture will wrap back around a model. If you look in the Textures folder under
the Robot Kyle folder from earlier this hour, you see the Robot_Color texture. It
looks strange, but that is the unwrapped texture for the model. The generation of
unwraps, models, and textures is an art form and is not covered in this text. A
preliminary knowledge of how it works should suffice at this level.

CAUTION

Weird Textures
Later in this hour, you will apply some textures to models. You might notice that
the textures warp a bit or get flipped in the wrong direction. Just know that this is
not a mistake or an error. This occurs when you take a basic rectangular 2D texture
and apply it to a model. The model has no idea which way is correct, so it applies
the texture however it can. If you want to avoid this issue, use textures specifically
designed for (that is, unwrapped for) the model you are using.

Shaders
Whereas the texture of a model determines what is drawn on its surface, the shader
determines how it is drawn. Here’s another way to look at this: A material is the
interface between you and a shader. The material tells you what the shader needs to
render an object, and you provide those items to make it look the way you want. This
might seem nonsensical right now, but later, when you create materials, you will begin
to understand how they work. Much of the information about shaders is covered later
this hour because you cannot use a shader without a material. In fact, much of the
information to be learned about materials is actually about materials’ shaders.

TIP

Thought Exercise

If you are having trouble understanding how a shader works, consider this scenario:
Imagine you have a piece of wood. The physicality of the wood is its mesh; the
color, texture, and visible element are its texture. Now take that piece of wood and
pour water on it. The wood still has the same mesh. It is still made of the same
substance (wood). It looks different, though. It is slightly darker and shiny. In this
example, you have two “shaders”: dry wood and wet wood. The wet wood “shader”
had something added that made it look a little different without actually changing
it.

Materials
As mentioned earlier, materials are not much more than containers for shaders and
textures that can be applied to models. Most of the customization of materials depends
on which shader is chosen for it, although all shaders have some common
functionality.
To create a new material, start by making a Materials folder. Then right-click the
folder and select Create > Material. Give your material some descriptive name, and
you are done. Figure 3.6 shows two materials with different shader settings. Notice
how they both use the same Standard shader. Each has a base albedo color of white
(more about albedo later), but they have different Smoothness settings. The Flat
material has a low Smoothness, so the lighting looks very flat because the light
bounces in a lot of directions. The Shiny material has a higher Smoothness, which
creates a more focused light bounce. For both materials, there is also a preview of the
material, so you can see what it will look like once it is on a model.

FIGURE 3.6
Two materials with different shader settings.

Shaders Revisited
Now that you have been introduced to textures, models, and shaders, it is time to look
at how it all comes together. Unity has a very powerful Standard shader, which this
book focuses on. Table 3.1 describes the common shader properties. In addition to the
settings listing in Table 3.1, there are many other settings of the Standard shader;
however, this book focuses on mastering the ones listed in the table.

TABLE 3.1 Common Shader Properties

Property Description

Albedo The Albedo property defines the base color of the object. With Unity’s
powerful physically based rendering (PBR) system, this color interacts

with light as a real object would. For example, a yellow albedo will
look yellow in white light but green under blue light. This is where you
would apply a texture that contains the color information about your
model.

Metallic This setting does exactly what it sounds like it does: It changes how
metallic the material looks. This setting can also take in a texture as a
“map” of how metallic different parts of the model appear. For realistic
results, set this property to either 0 or 1.

Smoothness Smoothness is a key element in PBR as it represents various micro
imperfections, details, marks, and age that control how smooth (or
rough) a surface is. The result is that it makes a model look more or less
shiny. This property uses the same texture map as the Metallic property.
For realistic results, avoid extreme values like 0 and 1.

Normal
Map

The Normal Map property contains the normal map that will be applied
to the model. A normal map can be used to apply relief, or bumps, to a
model. This is useful when calculating lighting to give the model more
detail than it would otherwise have.

Tiling The Tiling property defines how often a texture can repeat on a model.
It can repeat in both the x and y axes. (Remember that textures are flat,
which is why there is no z tiling axis.)

Offset The Offset property defines where in the x and y axes of a texture to
begin applying.

This might seem like a lot of information to take in, but once you become more
familiar with the few basics of textures, shaders, and materials, you’ll find that the
Smoothness value of your understanding goes to 1 (classic comedy).
Unity also has several other shaders that this book doesn’t cover. The Standard shader
is very flexible and should work for most of your basic needs.

 TRY IT YOURSELF

Applying Textures, Shaders, and Materials to Models
Follow these steps to put all your knowledge of textures, shaders, and materials
together to create a decent-looking brick wall:

1. Start a new project or scene. Note that creating a new project causes the
editor to close and reopen.

2. Create a Textures folder and a Materials folder.

3. Locate the Brick_Texture.png file in the book files and drag it into the
Textures folder created in step 2.

4. Add a cube to the scene. Position it at (0, 1, -5). Give it a scale of (5, 2, 1).
Figure 3.7 shows the cube’s properties.

FIGURE 3.7
The properties of the cube.

5. Create a new material (by right-clicking the Materials folder and selecting
Create > Material) and name it BrickWall.

6. Leave the shader as Standard, and under Main Maps click the circle selector
(the little circle icon) to the left of the word Albedo. Select Brick_Texture
from the pop-up window.

7. Click and drag the brick wall material from the Project view onto the cube
in the Scene view.

8. Notice that the texture is stretched across the wall a little too much. With the
material selected, change the value of the x tiling to be 3. Make sure you do
this in the Main Maps section, not the Secondary Maps section. Now the
wall looks much better. You now have a textured brick wall in your scene.
Figure 3.8 shows the final product.

FIGURE 3.8
The final product of this Try It Yourself.

Summary
In this hour, you have learned all about models in Unity. You started by learning about
how models are built with collections of vertices called meshes. Then you discovered
how to use the built-in models, import your own models, and download models from
the Asset Store. You then learned about the model art workflow in Unity. You
experimented with textures, shaders, and materials. You finished by creating a textured
brick wall.

Q&A
Q. Will I still be able to make games if I’m not an artist?
A. Absolutely. Using free online resources and the Unity Asset Store, you can find

various art assets to put in your games.

Q. Do I need to know how to use all the built-in shaders?

A. Not necessarily. Many shaders are very situational. Start with the Standard
shader covered in this lesson and learn more if a game project requires it.

Q. If there are paid art assets in the Unity Asset Store, does that mean I can
sell my own art assets?

A. Yes, it does. In fact, the Asset Store is not limited to only art assets. If you can
create high-quality assets, you can certainly sell them in the store.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. True or False: Because of their simple nature, squares make up meshes in

models.
2. What file formats does Unity support for 3D models?
3. True or False: Only paid models can be downloaded from the Unity Asset Store.
4. Explain the relationship between textures, shaders, and materials.

Answers
1. False. Meshes are made up of triangles.
2. .fbx, .dae, .3ds, .dxf, and .obj files
3. False. There are many free models.
4. Materials contain textures and shaders. Shaders dictate the properties that can be

set by a material and how the material gets rendered.

Exercise
In this exercise, you’ll experiment with the effects shaders have on the way models
look. You will use the same mesh and texture for each model; only the shaders will be
different. The project created in this exercise is named Hour 3_Exercise and is
available in the Hour 3 book files.

1. Create a new scene or project.
2. Add a Materials folder and a Textures folder to your project. Locate the files

Brick_Normal.png and Brick_Texture.png in the Hour 3 book files and drag
them into the Textures folder.

3. In the Project view, select Brick_Texture. In the Inspector view, change the
aniso level to 3 to increase the texture quality for curves. Click Apply.

4. In the Project view, select Brick_Normal. In the Inspector view, change the

texture type to Normal Map. Click Apply.
5. Select Directional Light in the Hierarchy view and give it the position (0, 10,

-10) and the rotation (30, -180, 0).
6. Add four spheres to your project. Scale them each to (2, 2, 2). Spread them out

by giving them the positions (1, 2, -5), (-1, 0, -5), (1, 0, -5), and (-1, 2, -5).
7. Create four new materials in the Materials folder. Name them DiffuseBrick,

SpecularBrick, BumpedBrick, and BumpedSpecularBrick. Figure 3.9 shows
all the properties of the four materials. Go ahead and set them as shown.

FIGURE 3.9
Material properties.

8. Click and drag each of the materials onto one of the four spheres. Notice how the
light and the curvature of the spheres interact with the different shaders.
Remember that you can move about the Scene view to see the spheres from
different angles.

HOUR 4
Terrain and Environments

What You’ll Learn in This Hour:
 The fundamentals of terrain
 How to sculpt terrain
 How to decorate your terrain with textures
 How to add trees and grass to your terrain
 How to move around in your terrain with a character controller

In this hour, you’ll learn about terrain generation. You’ll learn what terrain is, how to
create it, and how to sculpt it. You will also get hands-on experience with texture
painting and fine-tuning. In addition, you’ll learn to make large, expansive, and
realistic-looking terrain pieces for your games and how to use a controller to move
around and explore.

Terrain Generation
All 3D game levels exist in some form of a world. These worlds can be highly abstract
or realistic. Often, games with expansive “outdoor” levels are said to have a terrain.
The term terrain refers to any section of land that simulates a world’s external
landscape. Tall mountains, far plains, and dank swamps are all examples of possible
game terrain.
In Unity, terrain is a flat mesh that can be sculpted into many different shapes. It may
help to think of terrain as the sand in a sandbox. You can dig into the sand or raise up
sections of it. The only thing basic terrain cannot do is overlap. This means you cannot
make things like caves or overhangs. Such items have to be modeled separately. Also,
just as with any other object in Unity, terrain has position, rotation, and scale (although
they aren’t usually changed during gameplay).

Adding Terrain to a Project

Creating a flat terrain in a scene is an easy task with some basic parameters. To add
terrain to a scene, just click GameObject > 3D Object > Terrain. An asset named
New Terrain appears in the project view, and an object called Terrain is added to your
scene. If you navigate around in the Scene view, you may also notice that the terrain
piece is very large. In fact, the piece is much larger than you could possibly need right
now. Therefore, you need to modify some of the properties of this terrain.
To make this terrain more manageable, you need to change the terrain resolution. By
modifying the resolution, you can change the length, width, and maximum height of
your piece of terrain.
The reason the term resolution is used will become more apparent later in this lesson,
when you learn about heightmaps. To change the resolution of the terrain piece, follow
these steps:

1. Select your terrain in the Hierarchy view. In the Inspector view, locate and
click the Terrain Settings button (see Figure 4.1).

2. In the Resolution section, note that currently, Terrain Width and Terrain
Length are set to 500. Change them both to 50, which is a more manageable
size.

FIGURE 4.1
The Resolution settings.

The other options in the Resolution settings modify the way textures are drawn and the
performance of your terrain. Leave these alone for now. After you change the width
and length, you will see that the terrain is much smaller and more manageable. Now it
is time to start sculpting.

NOTE

Terrain Size
Currently, you are working with terrain that is 50 units long and wide. This is
purely for manageability while you’re learning to use the various tools. In a real
game, the terrain would probably be a bigger size to fit your needs. It is also worth
noting that if you already have a heightmap (covered in the next section), you will
want the terrain ratio (the ratio of length and width) to match the ratio of the
heightmap.

Heightmap Sculpting
Traditionally, 256 shades of gray are available in 8-bit images. These shades range
from 0 (black) to 255 (white). Knowing this, you can use a black-and-white image,
often called a grayscale image, as something called a heightmap. A heightmap is a
grayscale image that contains elevation information similar to a topographical map.
The darker shades can be thought of as low points and the lighter shades as high
points. Figure 4.2 shows an example of a heightmap. It might not look like much, but a
simple image like this can produce some dynamic scenery.

FIGURE 4.2
A simple heightmap.

Applying a heightmap to your currently flat terrain is simple. You simply start with a
flat terrain and import the heightmap onto it, as shown in the following Try It
Yourself.

 TRY IT YOURSELF

Applying a Heightmap to Terrain
Follow these steps to import and apply a heightmap:

1. Create a new Unity project or scene. Locate the terrain.raw file in the Hour
4 files and place it somewhere you can easily find it.

2. Create a new terrain using the steps outlined earlier in this hour. Be sure to
set its width and height to 50.

3. With your terrain selected in the Hierarchy view, click the Terrain Settings
button in the Inspector view. (Refer to Figure 4.1 if needed.) In the
Heightmap section, click Import Raw.

4. In the Import Raw Heightmap dialog, locate the terrain.raw file from step 1
and click Open.

5. In the Import Heightmap dialog, set the options as they appear in Figure 4.3.
(Note: The Byte Order property isn’t related to the operating system your
computer in running. Instead, it relates to the operating system the
heightmap was created in.)

FIGURE 4.3
Import Heightmap dialog.

6. Click Import. Right about now, your terrain is looking strange. The
problem is that when you set the length and width of your terrain to be more
manageable, you left the height at 600. This is obviously much too high for
your current needs.

7. Change the terrain resolution by going back to the Resolution section under
Terrain Settings in the Inspector view. This time, change the height value to
60. The result should be something much more pleasant, as shown in Figure
4.4.

FIGURE 4.4
Terrain after you import a heightmap.

TIP

Calculating Height
So far, the heightmap might seem random, but it is actually quite easy to figure out.
Everything is based on a percentage of 255 and the maximum height of the terrain.
The max height of the terrain defaults to 600 but is easily changeable. If you apply
the formula (Gray Shade)/255 × (Max Height), you can easily calculate any point
on the terrain.
For instance, black has a value of 0, so any spot that is black is 0 units high (0/255
× 600 = 0). White has a value of 255; therefore, it produces spots that are 600 units
high (255/255 × 600 = 600). If you have a medium gray with a value of 125, any
spots of that color produce terrain that is about 294 units high (125/255 × 600 =
294).

NOTE

Heightmap Formats
In Unity, heightmaps must be grayscale images in the .raw format. There are many
ways to generate these types of images; you can use a simple image editor or even
Unity itself. If you create a heightmap using an image editor, try to make the map
the same length and width ratio as your terrain. Otherwise, some distortion will be
apparent. If you sculpt some terrain using Unity’s sculpting tools and want to
generate a heightmap for it, you can do so by going to the Heightmap section under
Terrain Settings in the Inspector view and clicking Export Raw.
Generally for large terrains, or where performance is important, you should export
your heightmap and convert your terrain to a mesh in another program. With a 3D
mesh, you can then also add caves, overhangs, and so on before importing the mesh

for use in Unity. Note, though, that if you import a mesh to use as a terrain, you
won’t be able to use Unity’s terrain texturing and painting tools with it. (However,
you can find third-party assets in the Asset Store that can provide this
functionality.)

Unity Terrain Sculpting Tools
Unity gives you multiple tools for hand sculpting your terrain. You can see these tools
in the Inspector view under the component Terrain. These tools all work basically the
same way: You use a brush with a given size and opacity to “paint” terrain. In effect,
what you are doing behind the scenes is painting a heightmap that is translated into
changes for the 3D terrain. The painting effects are cumulative, which means the more
you paint an area, the stronger the effect on that area. Figure 4.5 shows these tools,
which you can use to generate nearly any landscape you can imagine.

FIGURE 4.5
The terrain sculpting tools.

The first tool you will learn to use is the Raise/Lower tool. This tool, just as it sounds,
enables you to raise or lower the terrain wherever you paint. To sculpt with this tool,
follow these steps:

1. Select a brush. (The brush determines the size and shape of the sculpting
effect.)

2. Choose a brush size and opacity. (The opacity determines how strong the
sculpting effect is.)

3. Click and drag over the terrain in the Scene view to raise the terrain. Holding
Shift when you click and drag instead lowers the terrain.

Figure 4.6 illustrates some good starting options for sculpting given the terrain size 50
× 50 with a height of 60.

FIGURE 4.6
Good starting properties for sculpting.

The next tool is the Paint Height tool. This tool works almost exactly the same way as
the Raise/Lower tool except that it paints your terrain to a specified height. If the
specified height is higher than the current terrain, painting raises the terrain. If the
specified height is lower than the current terrain, however, the terrain is lowered. This
is useful for creating mesas and other flat structures in your landscape. Go ahead and
try it out!

TIP

Flattening Terrain
If, at any time, you want to reset your terrain back to being flat, you can do so by
going to the Paint Height tool and clicking Flatten. One benefit of doing this is that
you can flatten the terrain to a height other than its default 0. If your maximum
height is 60 and you flatten your heightmap to 30, you have the ability to raise the
terrain by 30 units, but you can also lower it by 30 units. This makes it easy to
sculpt valleys into your otherwise flat terrain.

The final tool you will use is the Smooth Height tool. This tool doesn’t alter the terrain

in highly noticeable ways. Instead, it removes a lot of the jagged lines that appear
when sculpting terrain. Think of this tool as a polisher. You will use it only to make
minor tweaks after your major sculpting is done.

 TRY IT YOURSELF

Sculpting Terrain
Now that you have learned about the sculpting tools, it’s time to practice using
them. In this exercise, you attempt to sculpt a specific piece of terrain:

1. Create a new project or scene and add a terrain. Set the resolution of the
terrain to 50 × 50 and give it a height of 60.

2. Flatten the terrain to a height of 20 by clicking the Paint Height tool,
changing the height to 20, and clicking Flatten. (Note: If the terrain appears
to disappear, it just moved up 20 units.)

3. Using the sculpting tools, attempt to create a landscape similar to that shown
in Figure 4.7. (Note: The lighting in the image has been changed to make it
easier to see.)

4. Continue to experiment with the tools and try to add unique features to your
terrain.

FIGURE 4.7
A sample terrain.

TIP

Practice, Practice, Practice
Developing strong, compelling levels is an art form in itself. Much thought has to
be given to the placement of hills, valleys, mountains, and lakes in games. Not only
do the elements need to be visually satisfying, they also need to be placed in such a
way as to make a level playable. Level-building skills don’t develop overnight. Be
sure to practice and refine your level-building skills to make exciting and
memorable levels.

Terrain Textures
You now know how to make the physical dimensions of a 3D world. Even though
there may be a lot of features to your landscape, it is still bland, shiny (due to the
default material), and difficult to navigate. It is time to add some character to your
level. In this section, you’ll learn how to texture your terrain to give it an engaging
look. Like sculpting terrain, texturing terrain works a lot like painting. You select a
brush and a texture and paint it onto your world.

Importing Terrain Assets
Before you can begin painting the world with textures, you need some textures to work
with. Unity has some terrain assets available to you, but you need to import them in
order to use them. To load these assets, select Assets > Import Package >
Environment. The Import Unity Package dialog appears (see Figure 4.8). You use this
dialog to specify which assets you want to import. Deselecting unneeded items is a
good idea if you want to keep your project size down. For now, though, just leave all
options checked and click Import. You should now have a new folder under Assets in
the Project view called Standard Assets. This folder contains all the terrain assets you
will be using in the rest of this hour.

NOTE

Missing Packages
If you are missing the Environment asset package when you go to Assets > Import
Package, that means that you did not select the Standard Assets option when
installing Unity. If you would like these assets (and many more that will be used
throughout this book), you can run the installer again and select to install the
standard assets.

Texturing Terrain
In order to begin painting terrain, you need to load a texture. Figure 4.9 illustrates the
Paint Texture tool in the Inspector, which you access after selecting the terrain in your

Hierarchy. Pay attention to the three numeric properties: brush size, opacity, and target
strength. You should be familiar with the first two properties, but the last one is new.
The target strength is the maximum opacity that is achievable through constant
painting. Its value is a percentage, with 1 being 100%. Use this as a control to avoid
painting your textures too strongly.

FIGURE 4.8
The Import Unity Package dialog.

FIGURE 4.9
Paint Texture tool and properties.

To load a texture, follow these steps:

1. Select Edit Textures > Add Texture in the Inspector (not from the Unity
menus).

2. In the Edit Terrain Texture dialog, click Select in the texture box (see Figure
4.10) and select the GrassHillAlbedo texture.

3. Click Add. There is no need to add a normal map, but you can if you have a
texture with some bumpiness to it.

FIGURE 4.10
The Edit Terrain Texture dialog.

At this point, your entire terrain should be covered in patchy grass. This looks better
than the white terrain you had before, but it is still far from realistic. Next, you will
actually begin painting and making your terrain look better.

 TRY IT YOURSELF

Painting Textures onto Terrain
Follow these steps to apply a new texture to your terrain to give it a more
realistic two-tone effect:

1. Using the steps listed earlier in this hour, add a new texture. This time, load
the GrassRockyAlbedo texture. Once you have loaded it, be sure to select it
by clicking it. (Note: A blue bar appears next to it if it is selected.)

2. Set the brush size to 30, the opacity to 20, and the target strength to 0.6.

3. Sparingly paint (by clicking and dragging) on the steep parts and crevices of
your terrain. This gives the impression that grass isn’t growing on the sides
of steep grades and in between hills (see Figure 4.11).

4. Continue experimenting with texture painting. Try loading the texture
CliffAlbedoSpecular and applying it to steeper parts or the texture
SandAlbedo and making a path.

FIGURE 4.11
Example of a two-toned textured cliff with a sand path.

You can load as many textures as you want in this fashion and achieve some realistic
effects. Be sure to practice texturing to determine the best-looking patterns.

NOTE

Creating Terrain Textures
Game worlds are often unique and require custom textures to fit within the context
of the games they are created for. You can follow some general guidelines when
making your own textures for terrain. The first is to always try to make the pattern
repeatable. This means the textures can be tiled seamlessly. The larger the texture,
the less obvious a repeating pattern is. The second guideline is to make the texture
square. Finally, try to make the texture dimension a power of 2 (32, 64, 128, 512,
and so on). The last two guidelines affect the compression of the texture and the
texture’s efficiency. With a little practice, you will be making brilliant terrain
textures in no time.

TIP

Subtlety Is the Best Policy
When texturing, remember to keep your effects subtle. In nature, one element tends
to fade to another without many harsh transitions. Your texturing efforts should
reflect that. If you can zoom out away from a piece of terrain and tell the exact
point where one texture starts, your effect is not subtle enough. It is often better to
work in many small and subtle applications of a texture rather than with one broad
application.

CAUTION

TerrainData Errors…What?
Depending on your project settings and the version of Unity you are using, you
may get errors when you run your scene. One error says something like
“TerrainData is missing splat texture…make sure it is marked for read/write in the
importer.” This error tells you that you are having runtime texture access issues.
Luckily, the fix is very simple. All you need to do is click on the offending texture
in the Project view, which causes the Inspector to show its Import settings. Then, in
the Inspector view, expand Advanced and check the box next to Read/Write
Enabled. Problem solved!

Generating Trees and Grass
A world with only flat textures would be boring. Almost every natural landscape has
some form of plant life. In this section, you’ll learn how to add and customize trees
and grass to give your terrain an organic look and feel.

Painting Trees
Adding trees to your terrain works very much like sculpting and texturing; the whole
process is very similar to painting. The basic premise is to load a tree model, set the
properties for the trees, and then paint the area where you want the trees to appear.
Based on the options you choose, Unity will spread out the trees and vary them to give
a more natural and organic look.
You use the Paint Trees tool to spread out trees over the terrain. Once the terrain has
been selected in the scene, select the Paint Trees tool in the Inspector view for the
Terrain (Script) component. Figure 4.12 shows the Paint Trees tool and its standard
properties.

FIGURE 4.12
The Paint Trees tool.

Table 4.1 describes the Paint Trees tool’s properties.

TABLE 4.1 The Paint Trees Tool’s Properties

Property Description

Brush Size The size of the area to which trees are added when painting.

Tree Density How densely the trees can be packed.
Tree
Height/Width,
Rotation, and so
on

How all the trees differ from each other. Using these properties
allows you to give the impression of many different trees instead
of the same tree repeated.

 TRY IT YOURSELF

Placing Trees on a Terrain
Let’s walk through the steps involved in placing trees onto terrain by using the
Paint Trees tool. This exercise assumes that you have created a new scene and
have already added a terrain. The terrain should be set to a length and width of
100. It will look better if the terrain has some sculpting and texturing done
already. Follow these steps:

1. Click Edit Trees > Add Tree to pull up the Add Tree dialog (see Figure
4.13).

2. Clicking the circle icon to the right of the Tree Prefab text box on the Add
Tree dialog pulls up the Tree Selector dialog.

FIGURE 4.13
The Add Tree dialog.

3. Select Conifer_Desktop and click Add.

4. Set your brush size to 2 and your tree density to 10. Leave the tree
height/width set to Random but reduce the overall size.

5. Paint trees on the terrain by clicking and dragging over the areas where you
want trees. Hold the Shift key while click-dragging to remove trees. If you
can’t paint, go to Terrain Settings > Tree & Detail Objects and ensure that
the Draw check box is selected.

6. Continue to experiment with different brush sizes, densities, and trees.

Painting Grass
Now that you have learned how to paint trees, you’ll learn how to apply grass and
other small plant life to your world. Grass and other small plants are called details in
Unity. Therefore, the tool used to paint grass is the Paint Details tool. Unlike trees,
which are 3D models, details are billboards (see the note “Billboards”). Just as you
have done over and over in this hour, you apply details to a terrain by using a brush
and a painting motion. Figure 4.14 illustrates the Paint Details tool and some of its
properties.

FIGURE 4.14
The Paint Details tool.

NOTE

Billboards
Billboards are a special type of visual component in a 3D world that give the effect
of a 3D model without actually being a 3D model. Models exist in all three
dimensions. Therefore, when moving around one, you can see the different sides.
Billboards, however, are flat images that always face the camera. When you
attempt to go around a billboard, the billboard turns to face your new position.
Common uses for billboards are grass details, particles, and onscreen effects.

Applying grass to your terrain is a fairly straightforward process. You first need to add
a grass texture:

1. Click Edit Details in the Inspector view and select Add Grass Texture.

2. In the Edit Grass Texture dialog, click the circle icon next to the Texture text
box (see Figure 4.15). Select the GrassFrond01AlbedoAlpha texture. You
can search for “grass” to help find it.

FIGURE 4.15
The Edit Grass Texture dialog.

3. Set your texture properties to whatever values you want. Pay special attention
to the color properties because they establish the range of natural colors for
your grass.

4. When you’re finished changing settings, click Apply.

When you have your grass loaded, you just need to choose a brush and brush
properties, and you are ready to begin painting grass.

TIP

Realistic Grass
You may notice that when you begin painting grass, it does not look realistic. You
need to focus on a few things when adding grass to your terrain. The first is to pay
attention to the colors you set for the grass texture. Try to keep them darker and
earth toned. The next thing you need to do is choose a nongeometric brush shape to
help break up hard edges. (Refer to Figure 4.14 for a good brush to use.) Finally,
keep the opacity and target strength properties very low. Good settings to start with
are .01 for opacity and .0625 for target strength. If you need more grass, you can
just keep painting over the same area. You can also go back to Edit Details and
change the grass texture properties.

CAUTION

Vegetation and Performance
The more trees and grass you have in a scene, the more processing is required to
render it. If you are concerned about performance, keep the amount of vegetation
low. Some of the properties you’ll look at later in this hour can help you manage
this, but as an easy rule, try to add trees and grass only to areas where they are
really needed.

TIP

Disappearing Grass
As with trees, grass is affected by its distance from the viewer. Whereas trees revert
to a lower quality when the viewer is far away, grass is just not rendered. The result
is a ring around the viewer beyond which no grass is visible. Again, you can
modify this distance by using properties discussed later in this hour.

Terrain Settings
The last of the terrain tools in the Inspector view is the Terrain Settings tool. This
tool’s settings control how the terrain, texture, trees, and details look and function
overall. Figure 4.16 shows the Terrain Settings tool.

FIGURE 4.16
The Terrain Settings tool.

The first group of settings is for the overall terrain. Table 4.2 describes some of these
settings.

TABLE 4.2 Base Terrain Settings

Setting Description

Draw Determines whether the terrain should be drawn.

Pixel
Error

Specifies the number of allowable errors when displaying terrain
geometry. The higher the value, the lower the detail of the terrain.

Base Map
Dist.

Specifies the maximum distance from which high-resolution textures are
displayed. When the viewer is farther than the distance set, textures
degrade to a lower resolution.

Cast
Shadows

Determines whether terrain geometry casts shadows.

Material This slot is for assigning a custom material capable of rendering terrain.

The material must contain a shader that can render terrain.

Reflection
Probes

Specifies how reflection probes are used on terrain. This is effective only
when using built-in standard material or a custom material that supports
rendering with reflection. It is an advanced setting that is not covered in
this text.

Thickness Specifies how much the terrain collision volume should extend along the
negative y axis. Objects are considered colliding with the terrain from the
surface to a depth equal to the thickness. This helps prevent high-speed
moving objects from penetrating into the terrain without the use of
expensive continuous collision detection.

In addition, some settings directly affect the way trees and details (like grass) behave
in a terrain. Table 4.3 describes these settings.

TABLE 4.3 Tree and Detail Object Settings

Setting Description

Draw Determines whether trees and details are rendered in the scene.

Bake Light
Probes For

Makes real-time lighting more realistic and efficient. This is an
advanced performance setting.

Detail
Distance

Specifies the distance from the camera at which details are no longer
drawn to the screen.

Collect
Detail
Patches

Preloads the terrain details to prevent hiccups when moving around
terrain, at the cost of memory usage.

Detail
Density

Specifies the number of detail/grass objects in a given unit of area. The
value can be set lower to reduce rendering overhead.

Tree
Distance

Specifies the distance from the camera at which trees are no longer
drawn to the screen.

Billboard
Start

Specifies the distance from the camera at which 3D tree models begin
to transition into lower-quality billboards.

Fade
Length

Specifies the distance over which trees transition between billboards to
higher-quality 3D models. The higher the setting, the smoother the
transition.

Max Mesh
Trees

Specifies the total number of trees able to be drawn simultaneously as
3D meshes and not billboards.

The next settings are for wind. Because you haven’t had a chance to actually run
around inside your world yet (although you will later in this hour), you might be

wondering how wind works. Basically, Unity simulates a light wind over your terrain,
and this light wind causes the grass to bend and sway and livens up the world. Table
4.4 describes the wind settings. (The Resolution settings are discussed earlier in this
hour in the section “Adding Terrain to a Project”).

TABLE 4.4 Wind Settings

Setting Description

Speed Specifies the speed, and therefore the strength, of the wind effect.

Size Specifies the size of the area of grass affected by the wind at one time.

Bending Specifies the amount of sway the grass has due to wind.
Grass
Tint

Controls the overall coloration of all grass in a level. (This is not really a
wind setting, but it is related.)

Character Controllers
At this point, you have finished your terrain. You have sculpted it, textured it, and
covered it in trees and grass. It is now time to get into your level and see what it’s like
to play it. Unity provides two basic character controllers that allow you to easily get
right into your scene without a lot of work on your end. Basically, you drop a
controller into a scene and then move around with the control scheme common to most
first-person games.

Adding a Character Controller
To add a character controller to your scene, you first need to import the asset by
selecting Assets > Import Package > Characters. In the Import Package dialog,
leave everything checked and click Import. A new folder named Characters is added
to your Project view, under the Standard Assets folder. Because you don’t have a 3D
model to use as the player, in this case you are going to use the first-person controller.
Locate the FPSController asset in the Character Controllers folder (see Figure 4.17)
and drag it onto your terrain in the Scene view.

FIGURE 4.17
The FPSController character controller.

Now that the character controller has been added to your scene, you can move around
in the terrain you created. When you play your scene, notice that you can now see
from where the controller was placed. You can use the WASD keys to move around,
the mouse to look around, and the spacebar to jump. Play around with the controls if
they feel a bit unusual to you, and enjoy experiencing your world!

TIP

“2 Audio Listeners” Message
When you added the character controller to the scene, you might have noticed a
message at the bottom of the editor that said, “There are 2 audio listeners in the
scene.” This is because the Main Camera (the camera that exists by default) has an
audio listener component, and so does the character controller that you added.
Because the cameras represent the player’s perspective, only one of them can listen
for audio. You can change this by removing the audio listener component from the
Main Camera. You can even delete the Main Camera game object altogether if you
wish, as FPSController has its own camera.

TIP

Falling Through the World
If you find the camera falling through the world whenever you run your scene,
chances are that your character controller is stuck partially in the ground. Try
raising your character controller up slightly above the ground. When the scene
starts, the camera should fall just a little bit until it hits the ground and stops.

Summary
In this hour, you have learned all about terrains in Unity. You started by learning what

terrains are and how to add them to a scene. From there, you looked at sculpting the
terrain with both a heightmap and Unity’s built-in sculpting tools. You learned how to
make your terrains look more appealing by applying textures in a realistic fashion.
Finally, you learned to add trees and grass to your terrain and explore it with a
character controller.

Q&A
Q. Does my game have to have terrain?
A. Not at all. Many games take place entirely inside modeled rooms, in abstract

spaces, or with meshes for exterior terrain.

Q. My terrain doesn’t look very good. Is that normal?
A. It takes a while to gain proficiency with the sculpting tools. With some practice,

your levels will begin looking much better. True quality comes from patience
working on a level.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. True or False: You can make caves out of the Unity terrain.
2. What is a grayscale image containing terrain elevation information called?
3. True or False: Sculpting terrain in Unity is a lot like painting.
4. How do you access Unity’s available terrain textures?

Answers
1. False. Unity’s terrain cannot overlap.
2. A heightmap
3. True
4. You import the terrain assets by going to Assets > Import Package >

Environment.

Exercise
Practice terrain sculpting and texturing. Sculpt a terrain that contains the following
elements:

 Beach

 Mountain range
 Flat plains

You may need a slightly larger terrain to fit in everything you’d like to have. Once you
have sculpted these elements, apply textures to your terrain in the following manner.
You can find all textures listed here in the Terrain Assets package:

 The beach should use the texture SandAlbedo and should fade into
GrassRockyAlbedo.
 Plains and all flat areas should be textured with GrassHillAlbedo.
 The texture GrassHillAlbedo should smoothly transition into
GlassRockyAlbedo as the terrain gets steeper.
 The texture GlassRockyAlbedo should transition into Cliff at its steepest and
highest points.

Finally, finish the terrain by adding trees and grass. Be as creative as you want with
this exercise. Build a world that makes you proud.

HOUR 5
Lights and Cameras

What You’ll Learn in This Hour:
 How to work with lights in Unity
 The core elements of cameras
 How to work with multiple cameras in a scene
 How to work with layers

In this hour, you’ll learn to use lights and cameras in Unity. You’ll start by looking at
the main features of lights. You’ll then explore the different types of lights and their
unique uses. When you are finished with lights, you’ll begin working with cameras.
You’ll learn how to add new cameras, place them, and generate interesting effects with
them. You’ll finish this lesson by learning about layers in Unity.

Lights
In any form of visual media, lights go a long way in defining how a scene is perceived.
Bright, slightly yellow light can make a scene look sunny and warm. Take the same
scene and give it a low-intensity blue light, and it will look eerie and disconcerting.
The color of the lights will also mix with the color of the skybox to give even more
realistic-looking results.
Most scenes that strive for realism or dramatic effect employ at least one light (and
often many). In previous hours, you briefly worked with lights to highlight other
elements. In this section, you work with lights more directly.

NOTE

Repeat Properties
The different lights share many of the same properties. If a light has a property that
has already been covered under a different light type, it isn’t covered again. Just
remember that if two different light types have properties with the same names,

those properties do the same thing.

NOTE

What Is a Light?
In Unity, lights are not objects themselves. Instead, a light is a component. This
means that when you add a light to a scene, you are really just adding a game
object with the Light component, which can be any of the types of light you can
use.

Baking Versus Real Time
Before you get started actually working with lights, you need to understand two main
ways of using light: baked and real time. The thing to keep in mind is that all light in
games is more or less computational. Light has to be figured out by the machine in
three steps:

1. The color, direction, and range of simulated light rays are calculated from a
light source.

2. When the light rays hit a surface, they illuminate and change the color of the
surface.

3. The angle of impact with the surface is calculated, and the light bounces. Steps
1 and 2 are repeated again and again (depending on the light settings). With
each bounce, the properties of the light rays are changed by the surfaces they
hit (just like in real life).

This process is repeated for every light in every frame and creates global illumination
(where objects receive light and color based on the objects around them). This process
is helped a little by the feature Precomputed Realtime GI, which is turned on by
default and requires no effort from you. With this feature, a part of the light calculation
process described above is calculated before the scene starts so only part of the
calculations need to be done at runtime. You may have already seen this in operation.
If you have ever opened a Unity scene for the first time and noticed that the scene
elements are dark for a moment, you have seen the precalculation process.
Baking, on the other hand, refers to the process of completely precalculating light and
shadow for textures and objects during creation. You can do this with Unity or with a
graphical editor. For instance, if you were to make a wall texture with a dark spot on it
that resembled a human shadow and then put a human model next to the wall it was
on, it would seem like the model was casting a shadow on the wall. The truth is,
though, that the shadow was “baked” into the texture. Baking can make your games
run much more quickly because the engine doesn’t have to calculate light and shadow
every single frame; however, baking isn’t very necessary for your current needs
because the games discussed in this book are not complex enough to require it.

Point Lights
The first light type you will be working with is the point light. Think of a point light as
a light bulb. All light is emitted from one central location out in every direction. The
point light is the most common type of light for illuminating interior areas.
To add a point light to a scene, select GameObject > Light > Point Light. Once in
the scene, the Point Light game object can be manipulated just like any other. Table
5.1 describes the point light properties.

TABLE 5.1 Point Light Properties

Property Description

Type Specifies the type of light that the component gives off. Because this is a
point light, the type should be Point. Changing the Type property changes
the type of light.

Range Dictates how far the light shines. Illumination fades evenly from the
source of light to the range dictated.

Color Specifies the color the light shines. Color is additive, which means if you
shine a red light on a blue object, it will end up purple.

Mode Determines if the light is a real-time light, a baked light, or a mixture of
the two.

Intensity Dictates how brightly a light shines. Note that the light still shines only as
far as the Range property dictates.

Indirect
Multiplier

Determines how bright the light is after it bounces off objects. (Unity
supports Global Illumination, meaning it calculates the results of
bouncing light.)

Shadow
Type

Specifies how shadows are calculated for this source in a scene. Soft
shadows are more realistic but are also more performance intensive.

Cookie Accepts a cubemap (like a skybox) that dictates a pattern for the light to
shine through. Cookies are covered in more detail later in this hour.

Draw
Halo

Determines whether a glowing halo appears around the light. Halos are
covered in more detail later in this hour.

Flare Accepts a light flare asset and simulates the effect of a bright light
shining into a camera lens.

Render
Mode

Determines the importance of this light. The three settings are Auto,
Important, and Not Important. An important light is rendered in higher
quality, whereas a less-important light is rendered more quickly. Use the
Auto setting for now.

Culling Determines what layers are affected by the light. By default, everything is

Mask affected by the light. Layers are covered in detail later in this hour.

 TRY IT YOURSELF

Adding a Point Light to a Scene
Follow these steps to build a scene with some dynamic point lighting:

1. Create a new project or scene and delete the directional light that is there by
default.

2. Add a plane to the scene (by selecting GameObject > 3D Object > Plane).
Ensure that the plane is positioned at (0, .5, 0) and rotated to (270, 0, 0). The
plane should be visible to the camera, but only from one side in the Scene
view.

3. Add two cubes to the scene. Position them at (-1.5, 1, -5) and (1.5, 1, -5).

4. Add a point light to the scene (by selecting GameObject > Light > Point
Light). Position the point light at (0, 1, -7). Notice how the light illuminates
the inner sides of the cubes and the background plane (see Figure 5.1).

5. Set the light’s shadow type to Hard Shadows and try moving it around.
Continue exploring the light properties. Be sure to experiment with the light
color, range, and intensity.

FIGURE 5.1
The results of this Try It Yourself.

Spotlights
Spotlights work a lot like the headlights of a car or flashlights. The light of a spotlight
begins at a central spot and radiates out in a cone. In other words, spotlights illuminate
whatever is in front of them while leaving everything else in the dark. Whereas a point
light sends light in every direction, you can aim a spotlight.
To add a spotlight to a scene, select GameObject > Create Other > Spotlight.
Alternatively, if you already have a light in your scene, you can change its type to
Spot, and it becomes a spotlight.
Spotlights have only one property not already covered: Spot Angle. The Spot Angle
property determines the radius of the cone of light emitted by the spotlight.

 TRY IT YOURSELF

Adding a Spotlight to a Scene
You now have a chance to work with spotlights in Unity. For brevity, this
exercise uses the project created in the previous Try It Yourself for point lights.
If you have not completed that exercise, do so and then continue with the
following steps:

1. Duplicate the Point Light scene from the previous project (by selecting Edit
> Duplicate) and name the new scene Spotlight.

2. Right-click Point light in the Hierarchy view and select Rename. Rename
the object Spotlight. In the Inspector, change the Type property to Spot.
Position the light object at (0, 1, -13).

3. Experiment with the properties of the spotlight. Notice how the range,
intensity, and spot angle shape and change the effect of the light.

Directional Lights
The last type of light you’ll work with in this hour is the directional light. A directional
light is similar to a spotlight in that it can be aimed. Unlike a spotlight, though, a
directional light illuminates an entire scene. You can think of a directional light as
similar to the sun. In fact, you used a directional light as a sun in Hour 4, “Terrain and
Environments.” The light from a directional light radiates evenly in parallel lines
across a scene.
A new scene comes with a directional light by default. To add a new directional light
to a scene, select GameObject > Light > Directional Light. Alternatively, if you
already have a light in a scene, you can change its type to Directional, and it becomes a
directional light.
Directional lights have one additional property that hasn’t been covered yet: Cookie

Size. Cookies are covered later in this hour, but basically this property controls how
big a cookie is and thus how many times it is repeated across a scene.

 TRY IT YOURSELF

Adding a Directional Light to a Scene
You will now add a directional light to a Unity scene. Once again, this exercise
builds on the project created in the previous Try It Yourself. If you have not
completed that exercise, do so, and then follow these steps:

1. Duplicate the Spotlight scene from the previous project (by selecting Edit >
Duplicate) and name the new scene Directional Light.

2. Right-click Spotlight in the Hierarchy view and select Rename. Rename
the object Directional Light. In the Inspector, change the Type property to
Directional.

3. Change the light’s rotation to (75, 0, 0). Notice how the sky changes when
you rotate the light. This is due to the scene using a procedural skybox.
Skyboxes are covered in more detail in Hour 6, “Game 1: Amazing Racer.”

4. Notice how the light looks on the objects in the scene. Now change the
light’s position to (50, 50, 50). Notice that the light does not change.
Because the directional light is in parallel lines, the position of the light does
not matter. Only the rotation of a directional light matters.

5. Experiment with the properties of the directional light. There is no range
(because range is infinite), but notice how the color and intensity affect the
scene.

NOTE

Area Lights and Emissive Materials
There are two more light types that are not covered in this text: area lights and
emissive materials.
An area light is a feature that exists for a process called lightmap baking. These
topics are more advanced than what you need for basic game projects so are not
covered in this book. If you want to learn more about this, see Unity’s wealth of
online documentation.
An emissive material is a material applied to an object that actually transmits light.
This type of light could be very useful for a TV screen, indicator lights, and so on.

Creating Lights Out of Objects

Because lights in Unity are components, any object in a scene can be a light. To add a
light to an object, first select the object. Then, in the Inspector view, click the Add
Component button. A new list should pop up. Select Rendering and then Light. Now
your object has a light component. An alternative way to add a light to an object is to
select the object and select Component > Rendering > Light.
Note a couple things about adding lights to objects. First, an object will not block the
light. This means that putting a light inside a cube will not stop the light from
radiating. Second, adding a light to an object does not make it glow. The object itself
will not look like it is giving off light, but it is.

Halos
Halos are glowing circles that appear around lights in foggy or cloudy conditions (see
Figure 5.2). They occur because light is bouncing off small particles all around the
light source. In Unity, you can easily add halos to lights. Each light has a Draw Halo
check box. If it is checked, a halo is drawn for the light. If you can’t see the halo, you
may be too close to the light, so try backing up a bit.

FIGURE 5.2
A halo around a light.

The size of a halo is determined by the light’s range. The bigger the range, the bigger
the halo. Unity also provides a few properties that apply to all halos in a scene. You
can access these properties by selecting Window > Lighting > Settings. Expand
Other Settings, and the settings then appear in the Inspector view (see Figure 5.3).

FIGURE 5.3
The scene lighting settings.

The Halo Strength property determines how big the halo will be, based on the light’s
range. For instance, if a light has a range of 10 and a strength of 1, the halo will extend
out all 10 units. If the strength is .5, the halo extends out only 5 units (10 × .5 = 5). The
Halo Texture property allows you to specify a different shape for a halo by providing a
new texture. If you do not want to use a custom texture for a halo, you can leave it
blank, and the default circular one is used.

Cookies
If you have ever shone a light on a wall and then put your hand in between the light
and the wall, you’ve probably noticed that your hand blocks some of the light, leaving
a hand-shaped shadow on the wall. You can simulate this effect in Unity by using
cookies. Cookies are special textures that you can add to lights to dictate how the light
radiates. Cookies differ a little for point, spot, and directional lights. Spotlights and
directional lights both use black-and-white flat textures for cookies. Spotlights don’t
repeat the cookies, but directional lights do. Point lights also use black-and-white
textures, but this type of light must be placed in a cubemap. A cubemap is six textures
placed together to form a box (like a skybox).
Adding a cookie to a light is a fairly straightforward process. You simply apply a
texture to the Cookie property of the light. The trick to getting a cookie to work is
setting up the texture correctly ahead of time. To set up the texture correctly, select it
in Unity and then change its properties in the Inspector window. Figure 5.4 shows the
property settings for turning a texture into a cookie.

FIGURE 5.4
The texture properties of cookies for point, spot, and directional lights.

 TRY IT YOURSELF

Adding a Cookie to a Spotlight
This exercise requires the biohazard.png image, available in the book assets for
Hour 5. Follow these steps to add a cookie to a spotlight so that you can see the
process from start to finish:

1. Create a new project or scene. Delete the directional light from the scene.

2. Add a plane to the scene and position it at (0, 1, 0) with a rotation of (270, 0,
0).

3. Add a spotlight to the Main Camera by selecting Main Camera and then
clicking Component > Rendering > Light and changing the type to Spot.
Set the range to 18, the spot angle to 40, and the intensity to 3.

4. Drag the biohazard.png texture from the book assets into your Project view.
Select the texture, and in the Inspector view, change the texture type to
Cookie, set the light type to Spotlight, and set the alpha source to From
Grayscale. This makes the cookie block light where it’s black.

5. With the Main Camera selected, click and drag the biohazard texture into
the Cookie property of the light component. You should see the biohazard
symbol projected onto the plane (see Figure 5.5).

6. Experiment with different ranges and intensities of the light. Rotate the
plane and see how the symbol warps and distorts.

FIGURE 5.5
Spotlight with a cookie.

Cameras
The camera is the player’s view into the world. It provides perspective and controls
how things appear to the player. Every game in Unity has at least one camera. In fact,
a camera is always added for you whenever you create a new scene. The camera
always appears in the hierarchy as Main Camera. In this section, you’ll learn all about
cameras and how to use them for interesting effects.

Anatomy of a Camera
All cameras share the same set of properties that dictate how they behave. Table 5.2
describes all the camera properties.

TABLE 5.2 Camera Properties

Property Description

Clear Flags Determines what the camera displays in the areas where there are no
game objects. The default is Skybox. If there is no skybox, the camera
defaults to a solid color. Depth Only should be used only when there
are multiple cameras. Don’t Clear causes streaking and should be used

only if you’re writing a custom shader.

Background Specifies the background color if there is no skybox present.

Culling
Mask

Determines what layers are picked up by the camera. By default, the
camera sees everything. You can uncheck certain layers (more on
layers later in this hour), and they won’t be visible to the camera.

Projection Determines how the camera sees the world. The two options are
Perspective and Orthographic. Perspective cameras perceive the world
in 3D, with closer objects being larger and farther objects being
smaller. This is the setting to use if you want depth in your game. The
Orthographic setting ignores depth and treats everything as flat.

Field of
View

Specifies how wide an area the camera can see.

Clipping
Planes

Specifies the range where objects are visible to the camera. Objects that
are closer than the near plane or farther from the far plane will not be
seen.

View Port
Rect

Establishes what part of the actual screen the camera is projected on.
(View Port Rect is short for View Port Rectangle.) By default, x and y
are both set to 0, which causes the camera to start in the lower left of
the screen. The width and height are both set to 1, which causes the
camera to cover 100% of the screen vertically and horizontally. This is
discussed in more detail later in this hour.

Depth Specifies the priority for multiple cameras. Lower numbers are drawn
first, which means higher numbers may be drawn on top and may
effectively hide them.

Rendering
Path

Determines how the camera renders. It should be left set to Use Player
Settings.

Target
Texture

Enables you to specify a texture for the camera to draw to instead of the
screen.

Occlusion
Culling

Disables rendering of objects when they are not currently seen by the
camera because they are obscured (occluded) by other objects.

Allow HDR Determines whether Unity’s internal light calculations are limited to the
basic color range. (HDR stands for Hyper-Dynamic Range.) This
property allows for advanced visual effects.

Allow
MSAA

Enables a basic, but efficient, type of antialiasing called MultiSample
antialiasing. Antialiasing is a method of removing pixelated edges
when rendering graphics.

Allow
Dynamic
Resolution

Allows for dynamic resolution adjustment for console games.

Cameras have many properties, but you can set most and then forget about them.
Cameras also have a few extra components. The flare layer allows a camera to see the
lens flares of lights, and the audio listener allows the camera to pick up sound. If you
add more cameras to a scene, you need to remove their audio listeners. There can be
only one audio listener per scene.

Multiple Cameras
Many effects in modern games would not be possible without multiple cameras.
Thankfully, you can have as many cameras as you want in a Unity scene. To add a
new camera to a scene, select GameObject > Camera. Alternatively, you can add the
camera component to a game object that is already in your scene. To do that, select the
object and click Add Component in the Inspector. Select Rendering > Camera to
add the camera component. Remember that adding a camera component to an existing
object does not automatically give you the flare layer or audio listener components.

CAUTION

Multiple Audio Listeners
As mentioned earlier, a scene can have only a single audio listener. In older
versions of Unity, having two or more listeners would cause an error and prevent a
scene from running. Now, if you have multiple listeners, you just see a warning
message, although audio might not be heard correctly. This topic is covered in
detail in Hour 21, “Audio.”

 TRY IT YOURSELF

Working with Multiple Cameras
The best way to understand how multiple cameras interact is to get some
practice working with them. This exercise focuses on basic camera
manipulation:

1. Create a new project or scene and add two cubes. Place the cubes at (-2, 1,
-5) and (2, 1, -5).

2. Move the Main Camera to (-3, 1, -8) and change its rotation to (0, 45, 0).

3. Add a new camera to the scene (by selecting GameObject > Camera) and
position it at (3, 1, -8). Change its rotation to (0, 315, 0). Be sure to disable
the audio listener for the camera by unchecking the box next to the
component.

4. Run the scene. Notice that the second camera is the only one displayed. This
is because the second camera has a higher depth than the Main Camera. The

Main Camera is drawn to the screen first, and then the second camera is
drawn on top of it. Change the main camera depth to 1 and then run the
scene again. Notice that the Main Camera is now the only one visible.

Split-Screen and Picture-in-Picture
As you saw earlier in this hour, having multiple cameras in a scene doesn’t do much
good if one of them simply draws over the other one. In this section, you’ll learn to use
the Normalized View Port Rect property to achieve split-screen and picture-in-picture
effects.
The normalized view port basically treats the screen as a simple rectangle. The lower-
left corner of the rectangle is (0, 0), and the upper-right corner is (1, 1). This does not
mean that the screen has to be a perfect square. Instead, think of the coordinates as
percentages of the size. So, a coordinate of 1 means 100%, and a coordinate of .5
means 50%. When you know this, placing cameras on the screen becomes easy. By
default, cameras project from (0, 0) with a width and height of 1 (or 100%). This
causes them to take up the entire screen. If you were to change those numbers,
however, you would get a different effect.

 TRY IT YOURSELF

Creating a Split-Screen Camera System
This exercise walks through creating a split-screen camera system. This type of
system is common in two-player games where the players have to share the
same screen. This exercise builds on the previous Try It Yourself for multiple
cameras earlier in this hour. Follow these steps:

1. Open the project that you created in the preceding Try It Yourself.

2. Ensure that the Main Camera has a depth of -1. Ensure that the X and Y
properties of the camera’s View Port Rect property are both 0. Set the W and
H properties to 1 and .5, respectively (that is, 100% of the width and 50% of
the height).

3. Ensure that the second camera also has a depth of -1. Set the X and Y
properties of the view port to (0, .5). This causes the camera to begin
drawing halfway down the screen. Set the W and H properties to 1 and .5,
respectively.

4. Run the scene and notice that both cameras are now projecting on the screen
at the same time (see Figure 5.6). You can split the screen like this as many
times as you want.

FIGURE 5.6
The split-screen effect.

 TRY IT YOURSELF

Creating a Picture-in-Picture Effect
Picture-in-picture is commonly used to create effects like minimaps. With this
effect, one camera draws over another one in a specific area. This exercise
builds on the previous Try It Yourself for multiple cameras earlier in this hour:

1. Open the project that you created in the Try It Yourself “Working with
Multiple Cameras.”

2. Ensure that the Main Camera has a depth of -1. Ensure that the X and Y
properties of the camera’s Normalized View Port Rect property are both 0
and the W and H properties are both 1.

3. Ensure that the depth of the second camera is 0. Set the X and Y property of
the view port to (.75, .75) and set both the W and the H values to .2.

4. Run the scene. Notice that the second camera appears in the upper-right
corner of the screen (see Figure 5.7). Experiment with the different view port
settings to get the camera to appear in the different corners.

FIGURE 5.7
The picture-in-picture effect.

Layers
It can often be difficult to organize the many objects in a project and in a scene.
Sometimes you want items to be viewable by only certain cameras or illuminated by
only certain lights. Sometimes you want collisions to occur only between certain types
of objects. Unity allows you to organize by using layers. Layers are groupings of
similar objects that can be treated a certain way. By default, there are 8 built-in layers
and 24 layers for the user to define.

CAUTION

Layer Overload!
Adding layers can be a great way to achieve complex behaviors without doing a lot
of work. A word of warning, though: Do not create layers for items unless you need
to. Too often, people arbitrarily create layers when adding objects to a scene with
the thinking that they might need them later. This approach can lead to an
organizational nightmare as you try to remember what each layer is for and what it
does. In short, add layers when you need them. Don’t try to use layers just because
you can.

Working with Layers
Every game objects starts in the Default layer. That is, the object has no specific layer
to belong to, so it is lumped in with everything else. You can easily add an object to a
layer in the Inspector view. With the object selected, click the Layer drop-down in the
Inspector and choose a new layer for the object to be a part of (see Figure 5.8). By
default, there are five layers to choose from: Default, TransparentFX, Ignore Raycast,
Water, and UI. You can safely ignore most of these for now because they are not very
useful to you at this point.

FIGURE 5.8
The Layer drop-down menu.

Although the current built-in layers aren’t exactly useful to you, you can easily add
new layers. You add layers in the Tags & Layers Manager, which you can open in
three different ways:

 With an object selected, click the Layer drop-down and select Add Layer
(refer to Figure 5.8).

 In the menu at the top of the editor, click Edit > Project Settings > Tags and
Layers.

 Click the Layers selector in the scene toolbar and choose Edit Layers (see
Figure 5.9).

FIGURE 5.9

The Layers selector in the scene toolbar.

In the Tags & Layers Manager, click to the right of one of the user layers to give it a
name. Figure 5.10 illustrates this process, showing two new layers being added. (They
were added for this figure, and you won’t have them unless you add them yourself.)

FIGURE 5.10
Adding new layers to the Tags & Layers Manager.

Using Layers
There are many uses for layers. The usefulness of layers is limited only by what you
can think to do with them. This section covers four common uses.
One common use of layers is to hide them from the Scene view. By clicking the
Layers selector in the Scene view toolbar (refer to Figure 5.9), you can choose which
layers appear in the Scene view and which don’t. By default, the scene is set up to
show everything.

TIP

Invisible Scene Items
One common mistake is accidentally changing what layers are visible in the Scene
view. If you are not familiar with the ability to make layers invisible, this can be
quite confusing. Just note that if at any time items are not appearing in the Scene
view when they should, you should check the Layers selector to ensure that it is set
to show everything.

A second way to use layers is to exclude objects from being illuminated by light. This
is useful if you are making a custom user interface, making a shadowing system, or

using a complex lighting system. To prevent a layer from being illuminated by a light,
select the light and then, in the Inspector view, click the Culling Mask property and
deselect any layers that you want ignored (see Figure 5.11).

FIGURE 5.11
The Culling Mask property.

The third thing you can use layers for is to tell Unity which physics objects interact
with each other. You can choose this in Edit > Project Settings > Physics and look
for the Layer Collision Matrix (see Figure 5.12).

FIGURE 5.12
The Layer Collision Matrix.

The last thing to know about layers is that you can use them to determine what a
camera can and cannot see. This is useful if you want to build a custom visual effect
using multiple cameras for a single viewer. Just as previously described, to ignore
layers, simply click the Culling Mask drop-down on the camera component and
deselect anything you don’t want to appear.

 TRY IT YOURSELF

Ignoring Lights and Cameras
Follow these steps to briefly work with layers for both lights and cameras:

1. Create a new project or scene. Add two cubes to the scene and position them

at (2, 1, -5) and (2, 1, -5).

2. Enter the Tags & Layers Manager using any of the three methods listed
earlier and add two new layers: Ignore Lights and Ignore Cameras (refer
to Figure 5.10).

3. Select one of the cubes and add it to the Ignore Lights layer. Select the other
cube and add it to the Ignore Cameras layer.

4. Select the Directional Light in the scene, and in its Culling Mask property,
deselect the Ignore Lights layer. Notice that now only one of the cubes is
illuminated. The other one has been ignored because of its layer.

5. Select the Main Camera and remove the Ignore Cameras layer from its
Culling Mask property. Run the scene and notice that only one
nonilluminated cube appears. The other one has been ignored by the camera.

Summary
In this hour, you’ve learned about lights and cameras. You have worked with the
different types of lights. You have also learned to add cookies and halos to the lights in
a scene. This hour you have also learned all about the basics of cameras and about
adding multiple cameras to create split-screen and picture-in-picture effects. You
wrapped up the hour by learning about layers in Unity.

Q&A
Q. I noticed this lesson skipped lightmapping. Is it important to learn?
A. Lightmapping is a useful technique for optimizing the lighting of a scene. It’s

slightly more advanced, and you don’t need to know how to use it to make your
scenes look great.

Q. How do I know if I want a perspective camera or an orthographic camera?
A. As mentioned in this hour, a general rule of thumb is that you want perspective

cameras for 3D games or effects and orthographic cameras for 2D games and
effects.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. If you want to illuminate an entire scene with one light, which type should you

use?
2. How many cameras can be added to a scene?
3. How many user-defined layers can you have?
4. What property determines which layers are ignored by lights and cameras?

Answers
1. A directional light is the only light that is applied evenly to an entire scene.
2. You can have as many as you want.
3. 24
4. Culling Mask property

Exercise
In this exercise, you have a chance to work with multiple cameras and lights. You have
a bit of leeway in the construction of this exercise, so feel free to be creative:

1. Create a new scene or project. Delete the directional light. Add a sphere to the
scene and place it at (0, 0, 0).

2. Add four point lights to your scene. Place them at (-4, 0, 0), (4, 0, 0), (0, 0, -4),
and (0, 0, 4). Give each of them its own color. Set the ranges and intensities to
create the visual effect on the sphere that you want.

3. Delete the Main Camera from your scene (by right-clicking Main Camera and
selecting Delete). Add four cameras to the scene. Disable the audio listener on
three of them. Position them at (2, 0, 0), (-2, 0, 0), (0, 0, 2), and (0, 0, -2). Rotate
each of them about the y axis until it is facing the sphere.

4. Change the view port settings on the four cameras so that you achieve a split-
screen effect with all four cameras. You should have a camera displaying in each
corner of the screen taking up one-quarter of the screen’s size (see Figure 5.13).
This step is left for you to complete. If you get stuck, look for the completed
version of this exercise in the Hour 5 book assets.

FIGURE 5.13
The completed exercise.

HOUR 6
Game 1: Amazing Racer

What You’ll Learn in This Hour:
 How to design a basic game
 How to apply your knowledge of terrains to build a game-specific world
 How to add objects to a game to provide interactivity
 How to playtest and tweak a finished game

In this hour, you’ll use what you have learned so far to build your first Unity game.
This lesson starts by covering the basic design elements of the game. From there, you
will build the world in which the game will take place. Then you’ll add some
interactivity objects to make the game playable. You’ll finish by playing the game and
making any necessary tweaks to improve the experience.

TIP

Completed Project
Be sure to follow along in this hour to build the complete game project. If you get
stuck, look for the completed copy of the game in the book assets for Hour 6. Take
a look at it if you need help or inspiration!

Design
The design portion of game development is where you plan ahead of time all the major
features and components of a game. You can think of it as laying down the blueprint
so that the actual construction process is smoother. When making a game, a lot of time
is normally spent working through the design. Because the game you are making in
this hour is fairly basic, the design phase will go quickly. You need to focus on three
areas of planning to make this game: the concept, the rules, and the requirements.

The Concept

The idea behind this game is simple: You start at one end of an area and run quickly to
the other side. There are hills, trees, and obstacles in your path. Your goal is to see
how fast you can make it to the finish zone. This game concept was chosen for your
first game because it highlights everything you have worked on so far in this book.
Also, because you have not learned scripting in Unity yet, you cannot add very
elaborate interactions. Games you make in later hours will be more complex.

The Rules
Every game must have a set of rules. The rules serve two purposes. First, they say how
the player will actually play the game. Second, because software is a process of
permission (see the “Process of Permission” note), the rules dictate the actions
available to the players to overcome challenges. The rules for Amazing Racer are as
follows:

 There is no win or loss condition, only a completed condition. The game is
completed when the player enters the finish zone.
 The player always spawns in the same spot. The finish zone is always in the
same spot.
 There are water hazards, and whenever the player falls into one of them, the
player is moved back to the spawn point.
 The objective of the game is to try to get the fastest time possible. This is an
implicit rule and is not specifically built into the game. Instead, cues are built
into the game as hints to the player that this is the goal. The idea is that the
players will intuit the desire for a faster time based on the signals given to
them.

NOTE

Process of Permission
Something to always remember when making a game is that software is a process
of permission. What this means is that unless you specifically allow something, it is
unavailable to the player. For instance, if the player wants to climb a tree, but you
have not created any way for the player to climb a tree, that action is not permitted.
If you do not give players the ability to jump, they can’t jump. Everything that you
want the player to be able to do must be explicitly built in. Remember that you
cannot assume any action and must plan for everything! Also remember that
players can combine actions in inventive ways—for example, stacking blocks and
then jumping from the top block—if you make them possible.

NOTE

Terminology
Some new terms are used in this hour:

 Spawn: Spawning is the process by which a player or an entity enters a game.
 Spawn point: A spawn point is the place where a player or an entity spawns.
There can be one or many of these. They can be stationary or moving around.
 Condition: A condition is a form of a trigger. A win condition is the event that
causes the player to win the game (such as accumulating enough points). A
loss condition is an event that causes the player to lose the game (such as
losing all health points).
 Game manager: The game manager dictates the rules and flow of a game. It is
responsible for knowing when the game is won or lost (or just over). Any
object can be designated as the game manager, as long as it is always in the
scene. Often, an empty object or the Main Camera is designated as the game
manager.
 Playtesting: Playtesting is the process of having actual players play a game
that is still in development to see how they react to the game so it can be
improved accordingly.

The Requirements
An important step in the design process is determining which assets will be required
for the game. Generally speaking, a game development team is made up of several
individuals. Some of them handle designing, others work with programming, and
others make art. Every member of the team needs something to do to be productive
during every step of the development process. If everyone waited until something was
needed to begin working, there would be a lot of starting and stopping. Instead, you
determine your assets ahead of time so that things can be created before they are
needed. Here is a list of all the requirements for Amazing Racer:

 A piece of rectangular terrain. The terrain needs to be big enough to present a
challenging race. The terrain should have obstacles built in as well as a
designated spawn and finish point (see Figure 6.1).
 Textures and environment effects for the terrain. These are provided in the
Unity standard assets.
 A spawn point object, a finish zone object, and a water hazard object. These
will be generated in Unity.
 A character controller. This is provided by the Unity standard assets.
 A graphical user interface (GUI). This will be provided for you in the book
assets. Note that this hour uses the old-style GUI, which works purely from
script, for simplicity. In your projects, use the new UI system introduced in
Hour 14, “User Interfaces.”
 A game manager. This will be created in Unity.

FIGURE 6.1
The general terrain layout for the game Amazing Racer.

Creating the Game World
Now that you have a basic idea of the game, it is time to start building it. There are
many places to begin building a game. For this project, you’ll begin with the world.
Because this is a linear racing game, the world will be longer than it is wide (or wider
than it is long, depending on how you look at it). You will use many of the Unity
standard assets to rapidly create the game.

Sculpting the World
There are many ways you can create the terrain for Amazing Racer. Everyone will
probably have a different vision for it in his or her head. To streamline the process and
ensure that everyone will have the same experiences during this hour, a heightmap has
been provided for you. To sculpt the terrain, follow these steps:

1. Create a new project and name it Amazing Racer. Add a terrain to the project
and position its transform at (0, 0, 0) in the Inspector.

2. Locate the file TerrainHeightmap.raw in the book assets for Hour 6. Import the
TerrainHeightmap.raw file as a heightmap for the terrain (by clicking Import
Raw in the Heightmap section under Terrain Settings in the Inspector).

3. Leave the Depth, Width, and Height settings as they are. Change Byte Order to
Mac and set Terrain Size to 200 wide by 100 long by 100 tall.

4. Create a Scenes folder under Assets and save the current scene as Main.

The terrain should now be sculpted to match the world in the book. Feel free to make
minor tweaks and changes to your liking.

CAUTION

Building Your Own Terrain
In this hour, you are building a game based on a heightmap that has been provided
for you. The heightmap has been prepared for you so that you can quickly get
through the process of game development. You may, however, choose to build your
own custom world to make this game truly unique and yours. If you do that,
however, be warned that some of the coordinates and rotations provided for you in
this hour might not match up. If you want to build your own world, pay attention to
the intended placement of objects and position them in your world accordingly.

Adding the Environment
At this point, you can begin texturing and adding the environment effects to your
terrain. You need to import the Environment package (by selecting Assets > Import
Package > Environment).
You now have a bit of freedom to decorate the world however you would like. The
suggestions in the following steps are guidelines. Feel free to do things in a manner
that looks good to you:

1. Rotate the directional light to suit your preference.

2. Texture the terrain. The sample project uses the following textures:
GrassHillAlbedo for flat parts, CliffAlbedoSpecular for steep parts,
GrassRockyAlbedo for the areas in between, and MudRockyAlbedoSpecular
for inside the pits.

3. Add trees to your terrain. Trees should be placed sparsely and mostly on flat
surfaces.

4. Add some water to your scene from the Environment assets. Locate the
Water4Advanced prefab in the folder Assets\Standard
Assets\Environment\Water\Water4\Prefabs and drag it into your scene. (You’ll
learn more info about prefabs in Hour 11, “Prefabs.”) Position the water at
(100, 29, 100) and scale it to (2, 1, 2).

The terrain should now be prepared and ready to go. Be sure to spend a good amount
of time on texturing to make sure you have a good blend and a realistic look.

Fog
In Unity, you can add fog to a scene to simulate many different natural occurrences,

such as haze, actual fog, or the fading of objects over great distances. You can also use
fog to give new and alien appearances to your world. In the Amazing Racer game, you
can use fog to obscure the distant parts of the terrain and add an element of
exploration.
Adding fog is quite simple:

1. Select Window > Lighting > Settings. The Lighting window opens.

2. Turn on fog by checking the Fog check box under Other Settings.

3. Change the color to white and set the density to 0.005. (Note: These are
arbitrary values and can be changed (or omitted) based on your preferences.)

4. Experiment with the different fog densities and colors. Table 6.1 describes the
various fog properties.

Several properties impact how fog looks in a scene. Table 6.1 describes these
properties.

TABLE 6.1 Fog Properties

Setting Description

Fog
Color

Specifies the color of the fog effect.

Fog
Mode

Controls how the fog is calculated. The three modes are Linear,
Exponential, and Exponential Squared. For mobile, Linear works best.

Density Determines how strong the fog effect is. This property is used only if the
fog mode is set to Exponential or Exponential Squared.

Start
and
End

Control how close to the camera the fog starts and how far from the camera
it ends. These properties are used only in Linear mode.

Skyboxes
You can add some punch to a game by adding a skybox. A skybox is a large box that
goes around a world. Even though it is a cube consisting of six flat sides, it has inward-
facing textures to make it look round and infinite. You can create your own skyboxes
or use Unity’s standard skybox, which comes enabled in every 3D scene. For the most
part, in this book, you will use the built-in ones.
The standard skybox is called a “procedural skybox.” This means the color is not fixed
but is instead calculated and can change. You can see this by rotating your scene’s
directional light. Notice how the color of the sky, and even the simulated sun, changes
as the light is rotated. Procedural skyboxes key off a scene’s main directional light by
default.

Creating and applying your own custom procedural skybox is quite simple:

1. Right-click the Project view and select Create > Material. (Skyboxes are
really just materials applied to a “giant box in the sky.”)

2. In the Inspector for this new material, click the Shader drop-down and select
Skybox > Procedural. Note that this is where you can also choose to create 6
Sided, Cubemap, or Panoramic skyboxes.

3. Apply the skybox to the scene through the Lighting settings window (which
you open by selecting Window > Lighting > Settings). Alternatively, you can
just drag your skybox material into any empty space in the scene view. When
you apply the skybox to your scene, you don’t immediately see any change.
The skybox you just created has the same properties as the default skybox and
thus will look exactly the same.

4. Experiment with the different skybox properties. You can modify how the sun
looks, experiment with how light scatters in the atmosphere, and change the
sky color and exposure. Feel free to make something truly alien and unique for
your game.

Skyboxes don’t have to be procedural. They can use six textures to create highly
detailed skies (often called cubemaps). They could even contain HDR or panorama
images. All these settings are available depending on the type of skybox shader you
choose. For the most part, though, you will be working with procedural skyboxes in
this book because they are easy to get up and running quickly.

The Character Controller
At this stage of development, add a character controller to your terrain:

1. Import the standard character controllers by selecting Assets > Import
Package > Characters.

2. Locate the FPSController asset in the folder Assets\Standard
Assets\Characters\FirstPersonCharacter\Prefabs and drag it into your scene.

3. Position the controller (which is named FPSController and is blue in the
Hierarchy view) at (165, 32, 125). If the controller doesn’t seem to be
positioned correctly on the terrain, ensure that the terrain is positioned at (0, 0,
0), as per the previous exercise. Now rotate the controller to 260 on the y axis
so that it faces the correct direction. Rename the controller object Player.

4. Experiment with the First Person Controller and Character Controller
components on the Player game object. These two components control much of
how the player will be able to behave in your game. For instance, if your
character is able to climb over hills that you want to be impassable, you could
lower the Slope Limit property on the Character Controller component.

5. Because the Player controller has its own camera, delete the Main Camera

from the scene.

Once the character controller is in your scene and positioned, play the scene. Be sure
to move around and look for any areas that need to be fixed or smoothed. Pay attention
to the borders. Look for any areas where you are able to escape the world. Those
places need to be raised, or the controller needs to be modified, so that the player
cannot fall off the map. This is the stage at which you generally fix any basic problems
with your terrain.

TIP

Falling Off the World
Generally, game levels have walls or some other obstacle in place to prevent the
player from exiting the developed area. If a game employs gravity, the player may
fall off the side of the world. You always want to create some way to prevent
players from going somewhere they shouldn’t. This game project uses a tall berm
to keep the players in the play area. The heightmap provided to you in the book’s
assets for Hour 6 intentionally has a few places where the player can climb out. See
if you can find and correct them. You can also set a slope limit for FPSController in
the Inspector, as explained earlier in this hour.

Gamification
You now have a world in which your game can take place. You can run around and
experience the world to an extent. The piece that is missing is the game itself. Right
now, what you have is considered a toy. It is something that you can play with. What
you want is a game, which is a toy that has rules and a goal. The process of turning
something into a game is called gamification, and that’s what this section is all about.
If you followed the previous steps, your game project should now look something like
Figure 6.2 (though your choices for fog, skybox, and vegetation may create some
differences). The next few steps are to add game control objects for interaction, apply
game scripts to those objects, and connect them to each other.

FIGURE 6.2
The current state of the Amazing Racer game.

NOTE

Scripts
Scripts are pieces of code that define behaviors for game objects. You have not yet
learned about scripting in Unity. To make an interactive game, however, scripts are
a must. With this in mind, the scripts needed to make this game have been provided
for you. These scripts are as minimal as possible so that you can understand most
of this project. Feel free to open the scripts in a text editor and read them to see
what they are doing. Scripts are covered in greater detail in Hour 7, “Scripting, Part
1,” and Hour 8, “Scripting, Part 2.”

Adding Game Control Objects
As defined earlier in this hour, in the section “The Requirements,” you need four
specific game control objects. The first object is a spawn point—a simple game object
that exists solely to tell the game where to spawn the player. To create the spawn
point, follow these steps:

1. Add an empty game object to the scene (by selecting GameObject > Create
Empty).

2. Position the game object at (165, 32, 125) and give it a rotation of (0, 260, 0).

3. Rename the empty object Spawn Point in the Hierarchy view.

Next, you need to create the water hazard detector. This will be a simple plane that
will sit just below the water. The plane will have a trigger collider (as covered in more
detail in Hour 9, “Collision”), which will detect when a player has fallen in the water.
To create the detector, follow these steps:

1. Add a plane to the scene (by selecting GameObject > 3D Object > Plane)
and position it at (100, 27, 100). Scale the plane to (20, 1, 20).

2. Rename the plane Water Hazard Detector in the Hierarchy view.

3. Check the Convex and Is Trigger check boxes on the Mesh Collider
component in the Inspector view (see Figure 6.3).

4. Make the object invisible by disabling its Mesh Renderer component. Do this
by unchecking the box next to the Mesh Renderer component’s name in the
Inspector (see Figure 6.3).

FIGURE 6.3
The Inspector view of the Water Hazard Detector object.

Next, you need to add the finish zone to your game. This zone will be a simple object
with a point light on it so that the player knows where to go. The object will have a
capsule collider attached to it so that it will know when a player enters the zone. To
add the Finish Zone object, follow these steps:

1. Add an empty game object to the scene and position it at (26, 32, 37).

2. Rename the object Finish Zone in the Hierarchy view.

3. Add a light component to the Finish Zone object. (With the object selected,
click Component > Rendering > Light.) Change the type to Point if it isn’t
already set to this and set the range to 35 and intensity to 3.

4. Add a capsule collider to the Finish Zone object by selecting the object and
clicking Component > Physics > Capsule Collider. Check the Is Trigger
check box and change the Radius property to 9 in the Inspector view (see
Figure 6.4).

FIGURE 6.4
The Inspector view of the Finish Zone object.

The final object you need to create is the Game Manager object. This object doesn’t
technically need to exist. You could instead just apply its properties to some other
persistent object in the game world, such as the Main Camera. You generally create a
dedicated game manager object to prevent any accidental deletion, though. During this
phase of development, the game manager object is very basic. It will be used more
later on. To create the Game Manager object, follow these steps:

1. Add an empty game object to the scene.

2. Rename the game object Game Manager in the Hierarchy view.

Adding Scripts
As mentioned earlier, scripts specify behaviors for game objects. In this section, you’ll
apply scripts to your game objects. At this point, it is not important for you to
understand what these scripts do. You can add scripts to your project in one of two
ways:

 Drag existing scripts into the Project view of your project.
 Create new scripts in your project by right-clicking in the Project view and
selecting Create > C# Script.

Once scripts are in a project, applying them is easy. To apply a script, simply drag it
from the Project view onto whatever object you want to apply it to in either the
Hierarchy view or the Inspector view (see Figure 6.5).

FIGURE 6.5
Applying scripts by dragging them onto game objects.

You could also apply a script by dragging it onto an object in the Scene view, but if
you do, you run the risk of missing and accidently putting the script on some other
object. Therefore, applying scripts through the Scene view is not advisable.

TIP

The Special Script Icon
You may have noticed that the GameManager script has a different, gear-shaped,
icon in the Project view. This is due to the script having a name that Unity
automatically recognizes: GameManager. There are a few specific names that,
when used for scripts, change the icon and make it easier to identify.

 TRY IT YOURSELF

Importing and Attaching Scripts
Follow these steps to import the scripts from the book files and attach them to
the correct objects:

1. Create a new folder in your Project view and name it Scripts. Locate the
three scripts in the Hour 6 book files—FinishZone.cs, GameManager.cs, and

PlayerRespawn.cs—and drag them into your newly created Scripts folder.

2. Drag the FinishZone.cs script from the Project view onto the Finish Zone
game object in the Hierarchy view.

3. Select the Game Manager object in the hierarchy. In the Inspector, select
Add Component > Scripts > GameManager. (This is an alternative way of
adding a script component to a game object.)

4. Drag the PlayerRespawn.cs script from the Project view onto the Water
Hazard Detector game object in the hierarchy.

Connecting the Scripts
If you read through the scripts earlier, you may have noticed that they all have
placeholders for other objects. These placeholders allow one script to talk to another
script. For every placeholder in these scripts, there is a property in the component for
that script in the Inspector view. Just as with scripts, you apply the objects to the
placeholders by clicking and dragging (see Figure 6.6).

FIGURE 6.6
Moving game objects onto placeholders.

 TRY IT YOURSELF

Connecting Scripts to Scripts
Follow these steps to give the scripts the game objects they need to function
correctly:

1. Select the Water Hazard Detector object in the Hierarchy view. Notice
that the Player Respawn component has a Game Manager property. This
property is a placeholder for the Game Manager object you made previously.

2. Click and drag the Game Manager object from the Hierarchy view onto the

Game Manager property of the Player Respawn (Script) component. Now,
whenever players fall into the water hazard, the water hazard will let the
Game Manager object know, and the player will get moved back to the
spawn point at the beginning of the level.

3. Select the Finish Zone game object. Click and drag the Game Manager
object from the Hierarchy view onto the Game Manager property of the
Finish Zone (Script) component in the Inspector view. Now, whenever the
player enters the finish zone, the game control will be notified.

4. Select the Game Manager object. Click and drag the Spawn Point object
onto the Spawn Point property of the Game Manager (Script) component.

5. Click and drag the Player object (this is the character controller) onto the
Player property of the Game Manager object.

That’s all there is to connecting the game objects. Your game is now completely
playable! Some of this might not make sense right now, but the more you study it and
work with it, the more intuitive it becomes.

Playtesting
Your game is now done, but it is not time to rest just yet. Now you have to begin the
process of playtesting. Playtesting involves playing a game with the intention of
finding errors or things that just aren’t as fun as you thought they would be. A lot of
times, it can be beneficial to have other people playtest your games so that they can tell
you what makes sense to them and what they found enjoyable.
If you followed all the steps previously described, there shouldn’t be any errors
(commonly called bugs) for you to find—at least, I hope so. The process of
determining what parts are fun, however, is completely at the discretion of the person
making the game. Therefore, this part is left up to you. Play the game and see what
you don’t like. Take notes of the things that aren’t enjoyable to you. Don’t just focus
on the negative, though. Also find the things that you like. Your ability to change these
things may be limited at the moment, so write them down. Plan on how you would
change the game if you had the opportunity.
One simple thing you can tweak right now to make the game more enjoyable is the
player’s speed. If you have played the game a couple of times, you might have noticed
that the character moves rather slowly, and that can make the game feel very long and
drawn out. To make the character fast, you need to modify the First Person Controller
(Script) component on the Player object. Expand the Movement property in the
Inspector view and change the run speed (see Figure 6.7). The sample project has this
set at 10. Try faster or slower speeds and pick one you enjoy. (You did notice that
holding down Shift as you play makes you run, right?)

FIGURE 6.7
Changing the player’s walk and run speeds.

TIP

Where’s My Mouse?
To avoid having an annoying mouse cursor flying around while you are trying to
play the game, the First Person Character Controller (the FPSController game
object) hides and “locks” it. This is great when playing, except when you need your
mouse to click a button or stop playing. If you need your mouse cursor back, you
can simply press the Escape key to unlock and show it. Alternatively, if you need
to leave play mode, you can do so by pressing Ctrl+P (Command+P on a Mac).

Summary
In this hour, you made your first game in Unity. You started by looking at the various
aspects of the game’s concept, rules, and requirements. From there, you built the game
world and added environment effects. Then you added the game objects required for
interactivity. You applied scripts to those game objects and connected them. Finally,
you playtested your game and noted the things you liked and didn’t like.

Q&A
Q. This lesson seems over my head. Am I doing something wrong?

A. Not at all! This process can feel very alien to someone who is not used to it.
Keep reading and studying the materials, and it will all begin to come together.
The best thing you can do is pay attention to how the objects connect through the
scripts.

Q. You didn’t cover how to build and deploy the game. Why not?
A. Building and deployment are covered later in this book, in Hour 23, “Polish and

Deploy.” There are many things to consider when building a game, and at this
point, you should just focus on the concepts required to develop it.

Q. Why couldn’t I make a game without scripts?
A. As mentioned earlier, scripts define the behavior of objects. It is very difficult to

have a coherent game without some form of interactive behavior. The only
reason you are building a game in Hour 6 before learning scripting in Hours 8
and 9 is to reinforce the topics you have already learned before moving on to
something different.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. What are a game’s requirements?
2. What is the win condition of the Amazing Racer game?
3. Which object is responsible for controlling the flow of the game?
4. Why is it important to playtest a game?

Answers
1. The requirements are the list of assets that will need to be created to make the

game.
2. Trick question! There is no explicit win condition for this game. It is assumed

that the player wins when he or she gets a better time than previous attempts.
This is not built into the game in any way, though.

3. The game manager, which in the Amazing Racer game is called Game Manager
4. To discover bugs and determine what parts of the game work the way you want

them to

Exercise
The best part about making games is that you get to make them the way you want.

Following a guide can be a good learning experience, but you don’t get the satisfaction
of making a custom game. For this exercise, modify the Amazing Racer game a little to
make it more unique. Exactly how you change the game is up to you. Some
suggestions are listed here:

 Try to add multiple finish zones. See whether you can place them in a way that
offers the players more choices.
 Modify the terrain to have more or different hazards. As long as the hazards
are built like the water hazard (including the script), they will work just fine.
 Try having multiple spawn locations. Make it so some of the hazards move the
player to a different spawn point.
 Modify the sky and textures to create an alien world. Make the world
experience unique.

HOUR 7
Scripting, Part 1

What You’ll Learn in This Hour:
 The basics of scripts in Unity
 How to use variables
 How to use operators
 How to use conditionals
 How to use loops

You have so far in this book learned how to make objects in Unity. However, those
objects have been a bit boring. How useful is a cube that just sits there? It would be
much better to give the cube some custom action to make it interesting in some way.
For this you need scripts. Scripts are files of codes that are used to define complex or
nonstandard behaviors for objects. In this hour, you’ll learn about the basics of
scripting. You’ll begin by looking at how to start working with scripts in Unity. You’ll
learn how to create scripts and use the scripting environment. Then you’ll learn about
the various components of a scripting language, including variables, operators,
conditionals, and loops.

TIP

Sample Scripts
Several of the scripts and coding structures mentioned in this hour are available in
the book assets for Hour 7. Be sure to check them out for additional learning.

CAUTION

New to Programming
If you have never programmed before, this lesson might seem strange and
confusing. As you work through this hour, try your best to focus on how things are
structured and why they are structured that way. Remember that programming is

purely logical. If a program is not doing something you want it to, it is because you
have not told it how to do it correctly. Sometimes it is up to you to change the way
you think. Take this hour slowly and be sure to practice.

Scripts
As mentioned earlier in this hour, using scripts is a way to define behavior. Scripts
attach to objects in Unity just like other components and give them interactivity. There
are generally three steps involved in working with scripts in Unity:

1. Create the script.

2. Attach the script to one or more game objects.

3. If the script requires it, populate any properties with values or other game
objects.

The rest of this lesson discusses these steps.

Creating Scripts
Before creating scripts, it is best to create a Scripts folder under the Assets folder in the
Project view. Once you have a folder to contain all your scripts, simply right-click the
folder and select Create > C# Script. Then give your script a name before continuing.

NOTE

Scripting Language
Unity allows you to write scripts in C# or JavaScript. This book uses the C#
language for all scripts because it is a little more versatile and powerful in Unity. It
is worth noting that JavaScript is being phased out, and the option to create new
JavaScript files doesn’t even appear in the editor anymore. At some point in the
future, support for the language will be dropped entirely.

Once a script is created, you can view and modify it. Clicking a script in the Project
view enables you to see the contents of the script in the Inspector view (see Figure
7.1). Double-clicking the script in the Project view opens your default editor, where
you can add code to the script. Assuming that you have installed the default
components and haven’t changed anything, double-clicking a file opens the Visual
Studio development environment (see Figure 7.2).

FIGURE 7.1
The Inspector view of a script.

FIGURE 7.2
The Visual Studio software with the editor window showing.

 TRY IT YOURSELF

Creating a Script
Follow these steps to create a script for use in this section:

1. Create a new project or scene and add a Scripts folder to the Project view.

2. Right-click the Scripts folder and choose Create > C# Script. Name the
script HelloWorldScript.

3. Double-click the new script file and wait for Visual Studio to open. In the
editor window of Visual Studio (refer to Figure 7.2), erase all the text and
replace it with the following code:

Click here to view code image

using UnityEngine;

public class HelloWorldScript : MonoBehaviour
{
 // Use this for initialization
 void Start ()
 {
 print ("Hello World");
 }

 // Update is called once per frame
 void Update ()
 {

 }
}

4. Save your script by selecting File > Save or by pressing Ctrl+S
(Command+S on a Mac). Back in Unity, confirm in the Inspector view that
the script has been changed and run the scene. Notice that nothing happens.
The script was created, but it does not work until it is attached to an object,
as discussed in the next section.

NOTE

Script Names
You just created a script named HelloWordScript; the name of the actual script file
is important. In Unity and C#, the name of the file must match the name of the class
that is inside it. Classes are discussed later in this hour, but for now, suffice it to say
that if you have a script containing a class named MyAwesomeClass, the file that
contains it will be named MyAwesomeClass.cs. It is also worth noting that classes,
and therefore script filenames, cannot contain spaces.

NOTE

IDEs
Visual Studio is a robust and complex piece of software that comes bundled with
Unity. Editors like this are known as IDEs (integrated development environments),
and they assist you with writing the code for games. Since IDEs are not actually
part of Unity, this book does not cover them in any depth. The only part of Visual
Studio you need to be familiar with right now is the editor window. If there is
anything else you need to know about IDEs, it is covered in the hour where it is
needed. (Note: Prior to Unity 2018.1, an IDE called MonoDevelop also came
packaged with Unity. You can still acquire and use this software individually, but
MonoDevelop is no longer shipped with the engine.)

Attaching a Script
To attach a script to a game object, just click the script in the Project view and drag it
onto the object (see Figure 7.3). You can drag the script onto the object in the
Hierarchy view, the Scene view, or the Inspector view (assuming that the object is
selected). Once attached to an object, the script becomes a component of that object
and is visible in the Inspector view.

FIGURE 7.3
Clicking and dragging the script onto the desired object.

To see this in action, attach the script HelloWorldScript that you created earlier to the
Main Camera. You should now see a component named Hello World Script (Script) in
the Inspector view. If you run the scene, you see Hello World appear at the bottom of
the editor, underneath the Project view (see Figure 7.4).

FIGURE 7.4
The words Hello World output when running the scene.

Anatomy of a Basic Script
In the preceding section, you modified a script to output some text to the screen, but
the contents of the script were not explained. In this section, you’ll look at the default
template that is applied to every new C# script. (Note that scripts written in JavaScript

have the same components even if they look a little different.) Listing 7.1 contains the
full code that is generated for you by Unity when you make a new script named
HelloWorldScript.

Listing 7.1 Default Script Code
Click here to view code image

using UnityEngine;
using System.Collections;

public class HelloWorldScript : MonoBehaviour
{
 // Use this for initialization
 void Start () {

 }
 // Update is called once per frame
 void Update () {

 }
}

This code can be broken down into three parts: the using section, the class declaration
section, and the class contents.

The Using Section
The first part of the script lists the libraries that the script will be using. It looks like
this:
Click here to view code image

using UnityEngine;
using System.Collections;

Generally speaking, you don’t change this section too often and should just leave it
alone for the time being. These lines are usually added for you when you create a
script in Unity. The System.Collections library is optional and is often omitted if the
script doesn’t use any functionality from it.

The Class Declaration Section
The next part of the script is called a class declaration. Every script contains a class
that is named after the script. It looks like this:
Click here to view code image

public class HelloWorldScript : MonoBehaviour { }

All the code in between the opening bracket { and closing bracket } is part of this
class and therefore is part of the script. All your code should go between these
brackets. As with the using section, you rarely change the class declaration section and
should just leave it alone for now.

The Class Contents
The section in between the opening and closing brackets of the class is considered to
be “in” the class. All your code goes here. By default, a script contains two methods
inside the class, Start and Update:
Click here to view code image

// Use this for initialization
void Start () {

}
 // Update is called once per frame
void Update () {

}

Methods are covered in greater detail in Hour 8, “Scripting, Part 2.” For now, just
know that any code inside the Start method runs when a scene first starts. Any code
inside the Update method runs as fast as possible—even hundreds of times a second.

TIP

Comments
Programming languages enable code authors to leave messages for those who read
the code later. These messages are called comments. Any words that follow two
forward slashes (//) are “commented out.” This means that the computer will skip
over them and not attempt to read them as code. You can see an example of
commenting in the Try It Yourself “Creating a Script,” earlier in this hour.

NOTE

The Console
There is another window in the Unity editor that has not been mentioned until now:
the Console. Basically, the Console is a window that contains text output from your
game. Often, when there is an error or output from a script, messages get written to
the Console. Figure 7.5 shows the Console. If the Console window isn’t visible,
you can access it by selecting Window > Console.

FIGURE 7.5
The Console window.

 TRY IT YOURSELF

Using the Built-in Methods
Now you’re ready to try out the built-in methods Start and Update and see
how they work. The completed ImportantFunctions script is available in the
book assets for Hour 7. Try to complete the exercise that follows on your own,
but if you get stuck, refer to the book assets:

1. Create a new project or scene. Add a script to the project named
ImportantFunctions. Double-click the script to open it in your code editor.

2. Inside the script, add the following line of code to the Start method:

Click here to view code image

 print ("Start runs before an object Updates");

3. Save the script, and in Unity, attach it to the Main Camera. Run the scene
and notice the message that appears in the Console window.

4. Back in Visual Studio, add the following line of code to the Update
method:

Click here to view code image

 print ("This is called once a frame");

5. Save the script and quickly start and stop the scene in Unity. Notice how, in
the Console, there is a single line of text from the Start method and there
are a bunch of lines from the Update method.

Variables

Sometimes you want to use the same bit of data more than once in a script. In such a
case, you need a placeholder for data that can be reused. Such placeholders are called
variables. Unlike in traditional math, variables in programming can contain more than
just numbers. They can hold words, complex objects, or other scripts.

Creating Variables
Every variable has a name and a type that are given to the variable when it is created.
You create a variable with the following syntax:

<variable type> <name>;

So, to create an integer named num1, you type the following:

int num1;

Table 7.1 lists all the primitive (or basic) variable types and the types of data they can
hold.

NOTE

Syntax
The term syntax refers to the rules of a programming language. Syntax dictates how
things are structured and written so that the computer knows how to read them.
You may have noticed that every statement, or command, in a script so far has
ended with a semicolon. This is also a part of the C# syntax. Forgetting the
semicolon causes your script to not work. If you want to know more about the
syntax of C#, check out the C# Guide at https://docs.microsoft.com/en-
us/dotnet/csharp/.

TABLE 7.1 C# Variable Types

Type Description

int Short for integer, int stores positive or negative whole numbers.

float float stores floating-point data (such as 3.4) and is the default number
type in Unity. float numbers in Unity are always written with an f after
them, such as 3.4f, 0f, .5f, and so on.

double double also stores floating-point numbers; however, it is not the default
number type in Unity. It can generally hold bigger numbers than float.

bool Short for Boolean, bool stores true or false (actually written in code as
true or false).

char Short for character, char stores a single letter, space, or special character
(such as a, 5, or !). char values are written with single quotes ('A').

https://docs.microsoft.com/en-us/dotnet/csharp/

string The string type holds entire words or sentences. String values are
written with double quotes ("Hello World").

Variable Scope
Variable scope refers to where a variable is able to be used. As you have seen in
scripts, classes and methods use open and close brackets to denote what belongs to
them. The area between the two brackets is often referred to as a block. The reason this
is important is that variables are only able to be used in the blocks in which they are
created. So if a variable is created inside the Start method of a script, it is not
available in the Update method because they are two different blocks. Attempting to
use a variable where it is not available results in an error. If a variable is created in a
class but outside a method, it will be available to both methods because both methods
are in the same block as the variable (the class block). Listing 7.2 demonstrates this.

Listing 7.2 Demonstration of Class and Local Block Levels
Click here to view code image

// This is in the "class block" and will
// be available everywhere in this class
private int num1;

void Start ()
{
 // this is in a "local block" and will
 // only be available in the Start method
 int num2;
}

Public and Private
In Listing 7.2, you can see that the keyword private appears before num1. This is
called an access modifier, and it is needed only for variables declared at the class level.
There are two access modifiers you need to use: private and public. A lot can be
said about the two access modifiers, but what you really need to know at this point is
how they affect variables. Basically, a private variable (a variable with the word
private before it) is usable only inside the file in which it is created. Other scripts
and the editor cannot see it or modify it in any way. Private variables are intended for
internal use only. Public variables, in contrast, are visible to other scripts and even the
Unity editor. This makes it easy for you to change the values of your variables on-the-
fly within Unity. If you do not mark a variable as public or private, it defaults to
private.

 TRY IT YOURSELF

Modifying Public Variables in Unity
Follow these steps to see how public variables are visible in the Unity editor:

1. Create a new C# script and in Visual Studio add the following line in the
class above the Start method:

 public int runSpeed;

2. Save the script and then, in Unity, attach it to the Main Camera.

3. Select the Main Camera and look in the Inspector view. Notice the script
you just attached as a component. Now notice that the component has a new
property: Run Speed. You can modify that property in the Inspector view,
and the change will be reflected in the script at runtime. Figure 7.6 shows the
component with the new property. This figure assumes that the script created
was named ImportantFunctions.

FIGURE 7.6
The new Run Speed property of the script component.

Operators
All the data in variables is worthless if you have no way of accessing or modifying it.
Operators are special symbols that enable you to perform modifications on data. They
generally fall into one of four categories: arithmetic operators, assignment operators,
equality operators, and logical operators.

Arithmetic Operators
Arithmetic operators perform some standard mathematical operation on variables.
They are generally used only on number variables, although a few exceptions exist.
Table 7.2 describes the arithmetic operators.

TABLE 7.2 Arithmetic Operators

Operator Description

+ Addition. Adds two numbers together. In the case of strings, the + sign
concatenates, or combines, them. The following is an example:
"Hello" + "World"; // produces "HelloWorld"

- Subtraction. Reduces the number on the left by the number on the right.

* Multiplication. Multiplies two numbers together.
/ Division. Divides the number on the left by the number on the right.
% Modulus. Divides the number on the left by the number on the right but

does not return the result. Instead, the modulus returns the remainder of
the division. Consider the following examples:
10 % 2; // returns 0

6 % 5; // returns 1

24 % 7; // returns 3

Arithmetic operators can be cascaded together to produce more complex math strings,
as in this example:

x + (5 * (6 − y) / 3);

Arithmetic operators work in the standard mathematic order of operations. Math is
done left to right, with anything in parentheses calculated first, multiplication and
division done second, and addition and subtraction done third.

Assignment Operators
Assignment operators are just what they sound like: They assign values to variables.
The most notable assignment operator is the equals sign, but there are more
assignment operators that combine multiple operations. All assignment in C# is right
to left. This means that whatever is on the right side gets moved to the left. Consider
these examples:
Click here to view code image

x = 5; // This works. It sets the variable x to 5.
5 = x; // This does not work. You cannot assign a variable to a value (5).

Table 7.3 describes the assignment operators.

TABLE 7.3 Assignment Operators

Operator Description

= Assigns the value on the right to the variable on the left.

+ =, −
=, *=, /=

Shorthand assignment operator that performs some arithmetic operation
based on the symbol used and then assigns the result to whatever is on the
left. Consider these examples:
x = x + 5; // Adds 5 to x and then assigns it to
x
x += 5; // Does the same as above, only
shorthand

++, − Shorthand operators called the increment and decrement operators. They
increase or decrease a number by 1. Consider these examples:
x = x + 1; // Adds 1 to x and then assigns it to
x
x++; // Does the same as above, only
shorthand

Equality Operators
Equality operators compare two values. The result of an equality operator is always
either true or false. Therefore, the only variable type that can hold the result of an
equality operator is a Boolean. (Remember that Booleans can only contain true or
false.) Table 7.4 describes the equality operators.

TABLE 7.4 Equality Operators

Operator Description

== Not to be confused with the assignment operator (=), this operator returns
true only if the two values are equal. Otherwise, it returns false.
Consider these examples:
5 == 6; // Returns false

9 == 9; // Returns true

>, < These are the “greater than” and “less than” operators. Consider these
examples:
5 > 3; // Returns true

5 < 3; // Returns false

>=, <= These are similar to “greater than” and “less than” except that they are the
“greater than or equal to” and “less than or equal to” operators. Consider
these examples:
3 >= 3; // Returns true

5 <= 9; // Returns true

!= This is the “not equal” operator, and it returns true if the two values are
not the same. Otherwise, it returns false. Consider these examples:
5 != 6; // Returns true

9 != 9; // Returns false

TIP

Additional Practice

In the book assets for Hour 7 is a script called EqualityAndOperations.cs. Be sure
to look through it for some additional practice with the various operators.

Logical Operators
Logical operators enable you to combine two or more Boolean values (true or
false) into a single Boolean value. They are useful for determining complex
conditions. Table 7.5 describes the logical operators.

TABLE 7.5 Logical Operators

Operator Description

&&

Known as the AND operator, this compares two Boolean values and
determines whether they are both true. If either, or both, of the values is
false, this operator returns false. Consider these examples:
true && false; // Returns false

false && true; // Returns false

false && false; // Returns false

true && true; // Returns true

|| Known as the OR operator, this compares two Boolean values and
determines whether either of them is true. If either or both of the values
are true, this operator returns true. Consider these examples:
true || false; // Returns true

false || true; // Returns true

false || false; // Returns false

true || true; // Returns true

! Known as the NOT operator, this returns the opposite of a Boolean value.
Consider these examples:
!true; // Returns false

!false; // Returns true

Conditionals
Much of the power of a computer lies in its ability to make rudimentary decisions. At
the root of this power lie the Boolean true and false. You can use these Boolean
values to build conditionals and steer a program on a unique course. As you are
building your flow of logic through code, remember that a machine can only make a
single, simple decision at a time. Put enough of those decisions together, though, and
you can build complex interactions.

The if Statement
The basis of conditionals is the if statement, which is structured like this:
Click here to view code image

if (<some Boolean condition>)
{
 // do something
}

The if structure can be read as “if this is true, do this.” So, if you want to output
“Hello World” to the Console if the value of x is greater than 5, you could write the
following:
Click here to view code image

if (x > 5)
{
 print("Hello World");
}

Remember that the contents of the if statement condition must evaluate to either
true or false. Putting numbers, words, or anything else in there will not work:
Click here to view code image

if ("Hello" == "Hello") // Correct

if (x + y) // Incorrect

Finally, any code that you want to run if the condition evaluates to true must go
inside the opening and closing brackets that follow the if statement.

TIP

Odd Behavior
Conditional statements use a specific syntax and can give you strange behaviors if
you don’t follow that syntax exactly. You may have an if statement in your code
and notice that something isn’t quite right. Maybe the condition code runs all the
time, even when it shouldn’t. You may also notice that it never runs, even if it
should. You should be aware of two common causes of this. First, the if condition
may not have a semicolon after it. If you write an if statement with a semicolon,
the code following it will always run. Second, be sure that you are using the
equality operator (==) and not the assignment operator (=) inside the if statement.
Doing otherwise leads to bizarre behavior:
Click here to view code image

if (x > 5); // Incorrect
if (x = 5) // Incorrect

Being mindful of these two common mistakes will save you heaps of time in the
future.

The if / else Statement
The if statement is nice for conditional code, but what if you want to diverge your
program down two different paths? The if / else statement enables you to do
that. The if / else is the same basic premise as the if statement, except it can be
read more like “if this is true do this; otherwise (else), do this other thing.” The if /
else statement is written like this:
Click here to view code image

if (<some Boolean condition>)
{
 // Do something
}
else
{
 // Do something else
}

For example, if you want to print “X is greater than Y” to the Console if the variable x
is larger than the variable y, or you want to print “Y is greater than X” if x isn’t bigger
than y, you could write the following:
Click here to view code image

if (x > y)
{
 print("X is greater than Y");
}
else
{
 print("Y is greater than X");
}

The if / else if Statement
Sometimes you want your code to diverge down one of many paths. You might want
the user to be able to pick from a selection of options (such as a menu, for example).
An if / else if is structured in much the same way as the previous two
structures, except that it has multiple conditions:
Click here to view code image

if(<some Boolean condition>)
{
 // Do something
}

else if (<some other Boolean condition>)
{
 // Do something else
}
else
{
 // The else is optional in the IF / ELSE IF statement
 // Do something else
}

For example, if you want to output a person’s letter grade to the Console based on his
percentage, you could write the following:
Click here to view code image

if (grade >= 90) {
 print ("You got an A");
} else if (grade >= 80) {
 print ("You got a B");
} else if(grade >= 70) {
 print ("You got a C");
} else if (grade >= 60) {
 print ("You got a D");
} else {
 print ("You got an F");
}

TIP

The Great Bracket Crusade
You may have noticed that sometimes I place opening brackets (also called curly
braces) on their own lines and sometimes I put the opening bracket on the same line
as a class name, a method name, or an if statement. The truth is that either is
completely fine, and the choice is up to personal preference. That being said, great
online debates and code wars have been waged (and still rage on) over which
method is superior. Truly, this is a topic of great importance. There are no
bystanders. Everyone must choose a side.…

TIP

Single-line if Statements
Strictly speaking, if your if statement code is only a single line, you do not need
to have the curly braces (also called brackets). Therefore, your code that looks like
this:
Click here to view code image

if (x > y)
{

 print("X is greater than Y");
}

could also be written as follows:
Click here to view code image

if (x > y)
 print("X is greater than Y");

However, I recommend that you include the curly braces for now. This can save a
lot of confusion later, as your code gets more complex. Code inside curly braces is
referred to as a code block and is executed together.

Iteration
You have so far seen how to work with variables and make decisions. This is certainly
useful if you want to do something like add two numbers together. But what if you
want to add all the numbers between 1 and 100 together? What about between 1 and
1000? You definitely would not want to type all of that redundant code. Instead, you
can use something called iteration (commonly referred to as looping). There are two
primary types of loops to work with: the while loop and the for loop.

The while Loop
The while loop is the most basic form of iteration. It follows a structure similar to
that of an if statement:
Click here to view code image

While (<some Boolean condition>)
{
 // do something
}

The only difference is that an if statement runs its contained code only once, whereas
a loop runs the contained code over and over until the condition becomes false.
Therefore, if you want to add together all the numbers between 1 and 100 and then
output them to the Console, you could write something like this:
Click here to view code image

int sum = 0;
int count = 1;

while (count <= 100)
{
 sum += count;
 count++;
}

print(sum);

As you can see, the value of count starts at 1 and increases by 1 every iteration—or
execution of the loop—until it equals 101. When count equals 101, it is no longer
less than or equal to 100, so the loop exits. Omitting the count++ line results in the
loop running infinitely—so be sure it’s there. During each iteration of the loop, the
value of count is added to the variable sum. When the loop exits, the sum is written
to the Console.
In summation, a while loop runs the code it contains over and over as long as its
condition is true. When its condition becomes false, it stops looping.

The for Loop
The for loop follows the same idea as the while loop, except it is structured a bit
differently. As you saw in the code for the while loop, you had to create a count
variable, you had to test the variable (as the condition), and you had to increase the
variable all on three separate lines. The for loop condenses that syntax down to a
single line. It looks like this:
Click here to view code image

for (<create a counter>; <Boolean conditional>; <increment the counter >)
{
 // Do something
}

The for loop has three special compartments for controlling the loop. Notice the
semicolons, not commas, in between the sections in the for loop header. The first
compartment creates a variable to be used as a counter. (A common name for the
counter is i, short for iterator.) The second compartment is the conditional statement
of the loop. The third compartment handles increasing or decreasing the counter. The
previous while loop example can be rewritten using a for loop. It would look like
this:
Click here to view code image

int sum = 0;

for (int count = 1; count <= 100; count++)
{
 sum += count;
}

print(sum);

As you can see, the different parts of the loop get condensed and take up less space.
You can see that the for loop is really good at things like counting.

Summary
In this hour, you took your first steps into video game programming. You started by
looking at the basics of scripting in Unity. You learned how to make and attach scripts.
You also looked at the basic anatomy of a script. From there, you studied the basic
logical components of a program. You worked with variables, operators, conditionals,
and loops.

Q&A
Q. How much programming is required to make a game?
A. Most games use some form of programming to define complex behaviors. The

more complex the behaviors need to be, the more complex the programming
needs to be. If you want to make games, you should definitely become
comfortable with the concepts of programming. This is true even if you don’t
intend to be the primary developer for a game. With that in mind, rest assured
that this book provides everything you need to know to make your first few
simple games.

Q. Is this all there is to scripting?
A. Yes and no. Presented in this text are the fundamental blocks of programming.

They never really change but just get applied in new and unique ways. That said,
a lot of what is presented here is simplified because of the complex nature of
programming in general. If you want to learn more about programming, you
should read books or articles specifically on the subject.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. What two languages does Unity allow you to use for programming?
2. True or False: The code in the Start method runs at the start of every frame.
3. Which variable type is the default floating-point number type in Unity?
4. Which operator returns the remainder of division?
5. What is a conditional statement?
6. Which loop type is best suited for counting?

Answers
1. C# and JavaScript

2. False. The Start method runs at the beginning of the scene. The Update
method runs every frame.

3. float
4. Modulus
5. A code structure that allows the computer to choose a code path based on a

simple decision
6. The for loop

Exercise
It can often be helpful to view coding structures as building blocks. Alone, each piece
is simple. Put together, however, they can build complex entities. In the following
steps, you will encounter multiple programming challenges. Use the knowledge you
have gained in this hour to build a solution to each problem. Put each solution in its
own script and attach the scripts to the Main Camera of a scene to ensure that they
work. You can find the solution to this exercise in the book assets for Hour 7.

1. Write a script that adds together all the even numbers from 2 to 499. Output the
result to the Console.

2. Write a script that outputs all the numbers from 1 to 100 to the Console except
for multiples of 3 or 5. In place of multiples of 3 or 5, output “Programming is
awesome!” (Hint: You can tell whether a number is a multiple of another number
if the result of a modulus operation is 0; for example, 12 % 3 == 0 because
12 is a multiple of 3.)

3. In the Fibonacci sequence, you determine a number by adding the two previous
numbers together. The sequence starts with 0, 1, 1, 2, 3, 5.…Write a script that
determines the first 20 places of the Fibonacci sequence and outputs them to the
Console.

HOUR 8
Scripting, Part 2

What You’ll Learn in This Hour:
 How to write methods
 How to capture user input
 How to work with local components
 How to work with game objects

In Hour 7, “Scripting, Part 1,” you learned about the basics of scripting in Unity. In
this hour, you’ll use what you have learned to complete more meaningful tasks. First,
you’ll examine what methods are, how they work, and how to write them. Then you’ll
get some hands-on practice with user input. After that, you’ll examine how to access
components from scripts. You’ll wrap up the hour by learning how to access other
game objects and their components with code.

TIP

Sample Scripts
Several of the scripts and coding structures mentioned in this hour are available in
the book assets for Hour 8. Be sure to check them out for additional learning.

Methods
Methods, often called functions, are modules of code that can be called and used
independently of each other. Each method generally represents a single task or
purpose, and often many methods can work together to achieve complex goals.
Consider the two methods you have seen so far: Start and Update. Each represents
a single and concise purpose. The Start method contains all the code that is run for
an object when the scene first begins. The Update method contains the code that is
run every update frame of the scene (which is different from a render frame, or
“frames per second”).

NOTE

Method Shorthand
You have seen so far that whenever the Start method is mentioned, the word
method has followed it. It can become cumbersome to always have to specify that a
word used is a method. You can’t write just Start, though, because people
wouldn’t know if you meant the word, a variable, or a method. A shorter way of
handling this is to use parentheses with the word. So, the method Start can be
rewritten as just Start(). If you ever see something written like
SomeWords(), you know instantly that the writer is talking about a method
named SomeWords.

Anatomy of a Method
Before working with methods, you should look at the different parts that compose
them. The following is the general format of a method:
Click here to view code image

<return type> <name> (<parameter list>)
{
 <Inside the method's block>
}

Method Name
Every method must have a unique name (sort of…see the “Method Signature” section
below). Though the rules that govern proper names are determined by the language
used, good general guidelines for method names include the following:

 Make a method name descriptive. It should be an action or a verb.
 Spaces are not allowed.
 Avoid using special characters (for example, !, @, *, %, $) in method names.
Different languages allow different characters. By not using any, you avoid
risking problems.

Method names are important because they allow you to both identify and use them.

Return Type
Every method has the ability to return a variable back to whatever code called it. The
type of this variable is called the return type. If a method returns an integer (a whole
number), the return type is an int. Likewise, if a method returns a true or a false,
the return type is bool. If a method doesn’t return any value, it still has a return type.
In that instance, the return type is void (meaning nothing). Any method that returns a
value will do so with the keyword return.

Parameter List
Just as methods can pass a variable back to whatever code called it, the calling code
can pass variables in. These variables are called parameters. The variables sent into
the method are identified in the parameter list section of the method. For example, a
method named Attack that takes an integer called enemyID would look like this:
Click here to view code image

void Attack(int enemyID)
{}

As you can see, when specifying a parameter, you must provide both the variable type
and the name. Multiple parameters are separated with commas.

Method Signature
The combination of a method’s return type, name, and parameters list is often referred
to as a method’s signature. Earlier in this hour I mentioned that a method must have a
unique name, but that isn’t exactly true. What is true is that a method must have a
unique signature. Therefore, consider these two methods:
Click here to view code image

void MyMethod()
{}

void MyMethod(int number)
{}

Even though these two methods have the same name, they have different parameter
lists and thus are different. This practice of having different methods with the same
name can also be called overloading a method.

Method Block
The method block is where the code of the method goes. Every time a method is used,
the code inside the method block executes.

 TRY IT YOURSELF

Identifying Method Parts
Take a moment to review the different parts of a method and then consider the
following method:

Click here to view code image

int TakeDamage(int damageAmount)
{
 int health = 100;

 return health - damageAmount;
}

Can you identify the following pieces?

1. What is the method’s name?

2. What variable type does the method return?

3. What are the method’s parameters? How many are there?

4. What code is in the method’s block?

TIP

Methods as Factories
The concept of methods can be confusing for someone who is new to
programming. Often, mistakes are made regarding method parameters and what
methods return. A good way to keep it straight is to think of a method as a factory.
Factories receive raw materials that they use to make products. Methods work the
same way. The parameters are the materials you are passing in to the “factory,” and
the return is the final product of that factory. Just think of methods that don’t take
parameters as factories that don’t require raw goods. Likewise, think of methods
that don’t return anything as factories that don’t produce final products. By
imagining methods as little factories, you can work to keep the flow of logic
straight in your head.

Writing Methods
When you understand the components of a method, writing them is easy. Before you
begin writing methods yourself, take a moment to answer three main questions:

 What specific task will the method achieve?
 Does the method need any outside data to achieve its task?
 Does the method need to give back any data?

Answering these questions will help you determine a method’s name, parameters, and
return data.
Consider this example: A player has been hit with a fireball. You need to write a
method to simulate this by removing 5 health points. You know what the specific task
of this method is. You also know that the task doesn’t need any data (because you
know it takes 5 points) and should probably return the new health value back. You
could write the method like this:
Click here to view code image

int TakeDamageFromFireball()
{

 int playerHealth = 100;
 return playerHealth - 5;
}

As you can see in this method, the player’s health is 100, and 5 is deducted from it.
The result (which is 95) is passed back. Obviously, this can be improved. For starters,
what if you want the fireball to do more than 5 points of damage? You would then
need to know exactly how much damage a fireball is supposed to do at any given time.
You would need a variable, or in this case a parameter. Your new method could be
written as follows:
Click here to view code image

int TakeDamageFromFireball(int damage)
{
 int playerHealth = 100;
 return playerHealth - damage;
}

Now you can see that the damage is read in from the method and applied to the health.
Another place where this can be improved is with the health itself. Currently, players
can never lose because their health will always refresh back to 100 before having
damage deducted. It would be better to store the player’s health elsewhere so that its
value is persistent. You could then read it in and remove the damage appropriately.
Your method could then look like this:
Click here to view code image

int TakeDamageFromFireball(int damage, int playerHealth)
{
 return playerHealth - damage;
}

By examining your needs, you can build better, more robust methods for your game.

NOTE

Simplification
In the preceding example, the resulting method simply performs basic subtraction.
This is oversimplified for instruction’s sake. In a more realistic environment, there
are many ways to handle this task. A player’s health could be stored in a variable
belonging to a script. In this case, it would not need to be read in. Another
possibility would be to use a complex algorithm in the
TakeDamageFromFireball method to reduce the incoming damage by some
armor value, a player’s dodging ability, or a magical shield. If the examples here
seem silly, just bear in mind that they are meant to demonstrate various elements of
the topic.

Using Methods
Once a method is written, all that is left is to use it. Using a method is often referred to
as calling or invoking the method. To call a method, you just need to write the
method’s name followed by parentheses and any parameters. So, if you were trying to
use a method named SomeMethod, you would write the following:

SomeMethod();

If SomeMethod() requires an integer parameter, you call it like this:
Click here to view code image

// Method call with a value of 5
SomeMethod(5);
// Method call passing in a variable
int x = 5;
SomeMethod(x); // do not write "int x" here.

Note that when you call a method, you do not need to supply the variable type with the
variable you are passing in. If SomeMethod() returns a value, you want to catch it
in a variable. The code could look something like this (with a Boolean return type
assumed; in reality, it could be anything):

bool result = SomeMethod();

Using this basic syntax is all there is to calling methods.

 TRY IT YOURSELF

Calling Methods
Let’s work further with the TakeDamageFromFireball method described
in the previous section. This exercise shows how to call the various forms of the
method. (You can find the solution for this exercise as FireBallScript in the
book assets for Hour 8.) Follow these steps:

1. Create a new project or scene. Create a C# script called FireBallScript and
enter the three TakeDamageFromFireball methods described earlier.
These should go inside the class definition, at the same level of indent as the
Start() and Update() methods, but outside those two methods.

2. In the Start method, call the first TakeDamageFromFireball()
method by typing the following:

Click here to view code image

int x = TakeDamageFromFireball();
print ("Player health: " + x);

3. Attach the script to the Main Camera and run the scene. Notice the output in

the Console. Now call the second TakeDamageFromFireball()
method in Start() by typing the following (placing it below the first bit of
code you typed; no need to remove it):

Click here to view code image

int y = TakeDamageFromFireball(25);
print ("Player health: " + y);

4. Again, run the scene and note the output in the Console. Finally, call the last
TakeDamageFromFireball() method in Start() by typing the
following:

Click here to view code image

int z = TakeDamageFromFireball(30, 50);
print ("Player health: " + z);

5. Run the scene and note the final output. Notice how the three methods
behave a little differently from one another. Also notice that you called each
one specifically, and the correct version of the
TakeDamageFromFireball() method was used based on the
parameters you passed in.

TIP

Help Finding Errors
If you are getting errors when you try to run your script, pay attention to the
reported line number and character number in the Console, at the end of the error
message. Furthermore, you can “build” your code inside Visual Studio by using
Ctrl+Shift+B (Command+Shift+B on a Mac). When you do this, Visual Studio
checks your code and points out any errors in context, showing you exactly where
the troublesome line is. Try it.

Input
Without player input, video games would just be video. Player input can come in many
different varieties. Inputs can be physical—for example, gamepads, joysticks,
keyboards, and mice. There are capacitive controllers such as the relatively new touch
screens in modern mobile devices. There are also motion devices like the Wii Remote,
the PlayStation Move, and the Microsoft Kinect. Rarer is the audio input that uses
microphones and a player’s voice to control a game. In this section, you’ll learn all
about writing code to allow the player to interact with your game by using physical
devices.

Input Basics

With Unity (as with most other game engines), you can detect specific key presses in
code to make it interactive. However, doing so makes it difficult to allow players to
remap the controls to their preference, so it is a good idea to avoid doing that.
Thankfully, Unity has a simple system for generically mapping controls. With Unity,
you look for a specific axis to know whether a player intends a certain action. Then,
when the player runs the game, he can choose to make different controls mean
different axes.
You can view, edit, and add different axes by using the Input Manager. To access the
Input Manager, click Edit > Project Settings > Input. In the Input Manager, you can
see the various axes associated with different input actions. By default, there are 18
input axes, but you can add your own if you want. Figure 8.1 shows the default Input
Manager with the horizontal axis expanded.

FIGURE 8.1
The Input Manager.

While the horizontal axis doesn’t directly control anything (you will write scripts to do
that later), it represents that player going sideways. Table 8.1 describes the properties
of an axis.

TABLE 8.1 Axis Properties

Property Description

Name The name of the axis. This is how you reference it in code.

Descriptive
Name/
Descriptive

A verbose name for the axis that will appear to the player in the
game configuration. The negative is the opposite name. For
example: “Go left” and “Go right” would be a name and negative

Negative Name name pair.

Negative
Button/
Positive Button

The buttons that pass negative and positive values to the axis. For
the horizontal axis, these are the left arrow and the right arrow
keys.

Alt Negative
Button/ Alt
Positive Button

Alternate buttons to pass values to the axis. For the horizontal axis,
these are the A and D keys.

Gravity How quickly the axis returns to 0 once the key is no longer pressed.

Dead The value below which any input will be ignored. This helps
prevent jittering with joystick devices.

Sensitivity How quickly the axis responds to input.

Snap When checked, Snap causes the axis to immediately go to 0 when
the opposite direction is pressed.

Invert Checking this property inverts the controls.

Type The type of input. The types are keyboard/mouse buttons, mouse
movement, and joystick movement.

Axis The corresponding axis from an input device. This doesn’t apply to
buttons.

Joy Num Which joystick to get input from. By default, this property gets
input from all joysticks.

Input Scripting
Once your axes are set up in the Input Manager, working with them in code is simple.
To access any of the player’s input, you will be using the Input object. More
specifically, you will be using the GetAxis method of the Input object.
GetAxis() reads the name of the axis as a string and returns the value of that axis.
So, if you want to get the value of the horizontal axis, you type the following:
Click here to view code image

float hVal = Input.GetAxis("Horizontal");

In the case of the horizontal axis, if the player is pressing the left arrow key (or the A
key), GetAxis() returns a negative number. If the player is pressing the right arrow
key (or the D key), the method returns a positive value.

 TRY IT YOURSELF

Reading in User Input

Follow these steps to work with the vertical and horizontal axes and get a better
idea of how to use player input:

1. Create a new project or scene. Add a script named PlayerInput to the project
and attach the script to the Main Camera.

2. Add the following code to the Update method in the PlayerInput script:

Click here to view code image

float hVal = Input.GetAxis("Horizontal");
float vVal = Input.GetAxis("Vertical");
if(hVal != 0)
 print("Horizontal movement selected: " + hVal);
if(vVal != 0)
 print("Vertical movement selected: " + vVal);

This code must be in Update so that it continuously reads the input.

3. Save the script and run the scene. Notice what happens on the Console when
you press the arrow keys. Now try out the W, A, S, and D keys. If you don’t
see anything, click in the Game window with the mouse and try again.

Specific Key Input
Although you generally want to deal with the generic axes for input, sometimes you
want to determine whether a specific key has been pressed. To do so, you will again be
using the Input object. This time, however, you will use the GetKey method, which
reads in a special code that corresponds to a specific key. It then returns true if the
key is currently down or false if the key is not currently down. To determine
whether the K key is currently pressed, you type the following:
Click here to view code image

bool isKeyDown = Input.GetKey(KeyCode.K);

TIP

Finding Key Codes
Each key has a specific key code. You can determine the key code of the specific
key you want by reading the Unity documentation. Alternatively, you can use the
built-in tools of Visual Studio to find it. Whenever you are working on a script in
Visual Studio, you can always type in the name of an object followed by a period.
When you do, a menu with all the possible options pops up. Likewise, if you type
an open parenthesis after typing a method name, the same menu pops up, showing
you the various options. Figure 8.2 illustrates using this pop-up menu to find the
key code for the Esc key.

FIGURE 8.2
The automatic pop-up in Visual Studio.

 TRY IT YOURSELF

Reading in Specific Key Presses
Follow these steps to write a script that determines whether a specific key is
pressed:

1. Create a new project or scene. Add to the project a script named PlayerInput
(or modify the existing one) and attach it to the Main Camera.

2. Add the following code to the Update method in the PlayerInput script:

Click here to view code image

if(Input.GetKey(KeyCode.M))
 print("The 'M' key is pressed down");
if(Input.GetKeyDown(KeyCode.O))
 print("The 'O' key was pressed");

3. Save the script and run the scene. Notice what happens when you press the
M key versus what happens when you press the O key. In particular, note
that the M key causes output the entire time it is held, while the O key
outputs only when it is first pressed.

TIP

“Gotta Gotta Get Up to Get Down”
In the Try It Yourself exercise “Reading in Specific Key Presses,” you checked for
key input in two different ways. Namely, you used Input.GetKey() to test
whether a key was pressed at all. You also used Input.GetKeyDown() to test

whether a key was pressed during this frame. This second version only registered
the first time the key was pressed and ignored you holding down the key. Generally
speaking, Unity looks for three types of key press events: GetKey(),
GetKeyDown(), and GetKeyUp(). This is consistent across the other similar
methods as well: GetButton(), GetButtonDown(), GetButtonUp(),
GetMouseButton(), GetMouseButtonDown(), and so on. Knowing when
to look for a first key press versus a held button is important. Whichever type of
input you need, though, there’s a method for it.

Mouse Input
Besides capturing key presses, you want to capture mouse input from the user. There
are two components to mouse input: mouse button presses and mouse movement.
Determining whether mouse buttons are pressed is much like detecting key presses,
covered earlier this hour. In this section, you will again be using the Input object.
This time you’ll use the GetMouseButtonDown method, which takes an integer
between 0 and 2 to dictate which mouse button you are asking about. The method
returns a Boolean value indicating whether the button is pressed. The code to get the
mouse button presses looks like this:
Click here to view code image

bool isButtonDown;
isButtonDown = Input.GetMouseButtonDown(0); // left mouse button
isButtonDown = Input.GetMouseButtonDown(1); // right mouse button
isButtonDown = Input.GetMouseButtonDown(2); // center mouse button

Mouse movement is only along two axes: x and y. To get the mouse movement, you
use the GetAxis method of the input object. You can use the names Mouse X and
Mouse Y to get the movement along the x axis and the y axis, respectively. The code
to read in the mouse movement would look like this:
Click here to view code image

float value;
value = Input.GetAxis("Mouse X"); // x axis movement
value = Input.GetAxis("Mouse Y"); // y axis movement

Unlike button presses, mouse movement is measured by the amount the mouse has
moved since the last frame only. Basically, holding a key causes a value to increase
until it maxes out at -1 or 1 (depending on whether it is positive or negative). The
mouse movement, however, generally has smaller numbers because it is measured and
reset each frame.

 TRY IT YOURSELF

Reading Mouse Movement

In this exercise, you’ll read in mouse movement and output the results to the
Console:

1. Create a new project or scene. Add to the project a script named PlayerInput
(or modify the existing one) and attach it to the Main Camera.

2. Add the following code to the Update method in the PlayerInput script:

Click here to view code image

float mxVal = Input.GetAxis("Mouse X");
float myVal = Input.GetAxis("Mouse Y");
if(mxVal != 0)
 print("Mouse X movement selected: " + mxVal);
if(myVal != 0)
 print("Mouse Y movement selected: " + myVal);

3. Save the script and run the scene. Read through the Console to see the
output when you move the mouse around.

Accessing Local Components
As you have seen numerous times in the Inspector view, objects are composed of
various components. There is always a transform component, and there may optionally
be any number of other components, such as a Renderer, Light, and Camera. Scripts
are also components, and together these components give a game object its behavior.

Using GetComponent
You can interact with components at runtime through scripts. The first thing you must
do is get a reference to the component you want to work with. You should do this in
Start() and save the result in a variable. This way, you won’t have to waste time
repeating this relatively slow operation.
The GetComponent<Type>() method has a slightly different syntax than you’ve
seen to this point, using chevrons to specify the type you are looking for (for example,
Light, Camera, script name).
GetComponent() returns the first component of the specified type that is attached
to the same game object as your script. As mentioned earlier in this hour, you should
then assign this component to a local variable so you can access it later. Here’s how
you do this:
Click here to view code image

Light lightComponent; // A variable to store the light component.
Start ()
{
 lightComponent = GetComponent<Light> ();
 lightComponent.type = LightType.Directional;

}

Once you have a reference to a component, you can then easily modify its properties
through code. You do so by typing the name of the variable storing the reference
followed by a dot followed by whatever property you want to modify. In the example
above, you change the type property of the light component to be Directional.

Accessing the Transform
The component you’ll most commonly work with is the transform component. By
editing it, you can make objects move around the screen. Remember that an object’s
transform is made up of its translation (or position), its rotation, and its scale. Although
you can modify those directly, it is easier to use some built-in options called the
Translate() method, the Rotate() method, and the localScale variable, as
shown here:
Click here to view code image

// Moves the object along the positive x axis.
// The '0f' means 0 is a float (floating point number). It is the way Unity reads floats
transform.Translate(0.05f, 0f, 0f);
// Rotates the object along the z axis
transform.Rotate(0f, 0f, 1f);
// Scales the object to double its size in all directions
transform.localScale = new Vector3(2f, 2f, 2f);

NOTE

Finding the Transform
Because every game object has a transform, there’s no need to do an explicit find
operation; you can access the transform directly as above. This is the only
component that works this way; the rest must be accessed using a
GetComponent method.

Because Translate() and Rotate() are methods, if the preceding code were put
in Update(), the object would continually move along the positive x axis while
being rotated along the z axis.

 TRY IT YOURSELF

Transforming an Object
Follow these steps to see the previous code in action by applying it to an object
in a scene:

1. Create a new project or scene. Add a cube to the scene and position it at (0,
-1, 0).

2. Create a new script and name it CubeScript. Place the script on the cube. In
Visual Studio, enter the following code to the Update method:

Click here to view code image

transform.Translate(.05f, 0f, 0f);
transform.Rotate(0f, 0f, 1f);
transform.localScale = new Vector3(1.5f, 1.5f, 1.5f);

3. Save the script and run the scene. You may need to move to Scene view to
see the full motion. Notice that the effects of the Translate() and
Rotate() methods are cumulative, and the variable localScale is not;
localScale does not keep growing.

Accessing Other Objects
Many times, you want a script to be able to find and manipulate other objects and their
components. Doing so is simply a matter of finding the object you want and calling on
the appropriate component. There are a few basic ways to find objects that aren’t local
to the script or to the object the script is attached to.

Finding Other Objects
The first and easiest way to find other objects to work with is to use the editor. By
creating a public variable on the class level of type GameObject, you can simply
drag the object you want onto the script component in the Inspector view. The code to
set this up looks like this:
Click here to view code image

// This is here for reference
public class SomeClassScript : MonoBehaviour
{
 // This is the game object you want to access
 public GameObject objectYouWant;
 // This is here for reference
 void Start() {}
}

After you have attached the script to a game object, you see a property in the Inspector
called Object You Want (see Figure 8.3). Just drag any game object you want onto this
property to have access to it in the script.

FIGURE 8.3
The new Object You Want property in the Inspector.

Another way to find a game object is by using one of the Find methods. As a rule of
thumb, if you want a designer to be able to connect the object, or if it’s optional, then
connect via the Inspector. If disconnecting would break the game, then use a Find
method. There are three major ways to find using a script: by name, by tag, and by
type.
One option is to search by the object’s name. The object’s name is what it is called
inside the Hierarchy view. If you were looking for an object named Cube, the code
would look like this:
Click here to view code image

// This is here for reference
public class SomeClassScript : MonoBehaviour
{
 // This is the game object you want to access
 private GameObject target; // Note this doesn't need to be public if using find.
 // This is here for reference
 void Start()
 {
 target = GameObject.Find("Cube");
 }
}

The shortcoming of this method is that it just returns the first item it finds with the
given name. If you have multiple Cube objects, you won’t know which one you are
getting.

TIP

Finding Efficiency
Be aware that using a Find() method is extremely slow as it searches every game
object in the scene, in order, until it finds a match. In very large scenes, the amount
of time this method takes can cause a noticeable framerate drop in your game. It is
advisable to never use Find() if you can avoid it. That being said, there are many
times when it is necessary. In these instances, however, it is very beneficial to call
the method in Start() and save the results of the find in a variable for future use
to minimize the impact.

Another way to find an object is by its tag. An object’s tag is much like its layer
(discussed earlier in this hour). The only difference is semantics. The layer is used for
broad categories of interaction, whereas the tag is used for basic identification. You
create tags using the Tag Manager (click Edit > Project Settings > Tags & Layers).
Figure 8.4 shows how to add a new tag to the Tag Manager.

FIGURE 8.4
Adding a new tag.

Once a tag is created, simply apply it to an object by using the Tag drop-down list in
the Inspector view (see Figure 8.5).

FIGURE 8.5
Selecting a tag.

After a tag is added to an object, you can find it by using the FindWithTag()
method:
Click here to view code image

// This is here for reference
public class SomeClassScript : MonoBehaviour
{
 // This is the game object you want to access
 private GameObject target;
 // This is here for reference
 void Start()

 {
 target = GameObject.FindWithTag("MyNewTag");
 }
}

There are additional Find() methods available, but the ones covered here should
work for you in most situations.

Modifying Object Components
Once you have a reference to another object, working with the components of that
object is almost exactly the same as using local components. The only difference is
that now, instead of simply writing the component name, you need to write the object
variable and a period in front of it, like so:
Click here to view code image

// This accesses the local component, not what you want
transform.Translate(0, 0, 0);
// This accesses the target object, what you want
targetObject.transform.Translate(0, 0, 0);

 TRY IT YOURSELF

Transforming a Target Object
Follow these steps to modify a target object by using scripts:

1. Create a new project or scene. Add a cube to the scene and position it at (0,
-1, 0).

2. Create a new script and name it TargetCubeScript. Place the script on the
Main Camera. In Visual Studio, enter the following code in
TargetCubeScript:

Click here to view code image

// This is the game object you want to access
private GameObject target;
// This is here for reference
void Start()
{
 target = GameObject.Find("Cube");
}
void Update()
{
 target.transform.Translate(.05f, 0f, 0f);
 target.transform.Rotate(0f, 0f, 1f);
 target.transform.localScale = new Vector3(1.5f, 1.5f, 1.5f);
}

3. Save the script and run the scene. Notice that the cube moves around even
though the script is applied to the Main Camera.

Summary
In this hour, you have explored more scripting in Unity. You have learned all about
methods and looked at some ways to write your own. You have also worked with
player inputs from the keyboard and mouse. You learned about modifying object
components with code, and you finished the hour by learning how to find and interact
with other game objects via scripts.

Q&A
Q. How do I know how many methods a task requires?
A. A method should perform a single, concise function. You don’t want to have too

few methods with a lot of code because each method would then have to do more
than one thing. You also don’t want to have too many small methods because
that defeats the purpose of modularizing blocks of code. As long as each process
has its own specific method, you have enough methods.

Q. Why didn’t we learn more about gamepads in this hour?
A. The problem with gamepads is that all are unique. In addition, different

operating systems treat them differently. The reason they aren’t covered in detail
in this hour is that they are too varied, and discussing some of them wouldn’t
allow for a consistent reader experience. (In addition, not everyone has a
gamepad.)

Q. Is every component editable by script?
A. Yes, at least all of the built-in ones are.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. True or False: Methods can also be referred to as functions.
2. True or False: Not every method has a return type.
3. Why is it a bad thing to map player interactions to specific buttons?
4. In the Try It Yourself exercises in the sections on local and target components,

the cube was translated along the positive x axis and rotated along the z axis.

This caused the cube to move around in a big circle. Why?

Answers
1. True
2. False. Every method has a return type. If a method returns nothing, the type is
void.

3. If you map player interactions to specific buttons, the players will have a much
harder time remapping the controls to meet their preferences. If you map controls
to generic axes, players can easily change which buttons map to those axes.

4. Transformations happen on the local coordinate system (refer to Hour 2, “Game
Objects”). Therefore, the cube did move along the positive x axis. The direction
that axis was facing relative to the camera, however, kept changing.

Exercise
It is a good idea to combine each hour’s lessons together to see them interact in a more
realistic way. In this exercise, you’ll write scripts to allow the player directional
control over a game object. You can find the solution to this exercise in the book assets
for Hour 8 if needed.

1. Create a new project or scene. Add a cube to the scene and position it at (0, 0,
-5).

2. Create a new folder called Scripts and create a new script called
CubeControlScript. Attach the script to the cube.

3. Try to add the following functionality to the script. If you get lost, check the
book assets for Hour 8 for help:

 Whenever the player presses the left or right arrow key, move the cube
along the x axis negatively or positively, respectively. Whenever the player
presses the down or up arrow key, move the cube along the z axis
negatively or positively, respectively.

 When the player moves the mouse along the y axis, rotate the camera about
the x axis. When the player moves the mouse along the x axis, rotate the
cube about the y axis.

 When the player presses the M key, have the cube double in size. When the
player presses the M key again, have the cube go back to its original size.
The M key should act as a toggle switching between the two scale sizes.

HOUR 9
Collision

What You’ll Learn in This Hour:
 The basics of rigidbodies
 How to use colliders
 How to script with triggers
 How to raycast

In this hour, you’ll learn to work with the most prevalent physics concept in video
games: collision. Collision, simply put, involves knowing when the border of one
object has come into contact with another object. You’ll begin by learning what
rigidbodies are and what they can do for you. After that, you’ll experiment with
Unity’s powerful built-in physics engines—Box2D and PhysX. From there, you’ll
learn some more subtle uses of collision with triggers. You’ll end the hour by learning
to use a raycast to detect collisions.

Rigidbodies
For objects to take advantage of Unity’s built-in physics engines, they must include a
component called a rigidbody. Adding a rigidbody component makes an object behave
like a real-world physical entity. To add a rigidbody component, simply select the
object that you want (make sure you choose the version without 2D on the end) and
click Component > Physics > Rigidbody. The new rigidbody component is added to
the object in the Inspector (see Figure 9.1).

FIGURE 9.1
The rigidbody component.

The rigidbody component has several properties that you have not seen yet. Table 9.1
describes them.

TABLE 9.1 Rigidbody Properties

Property Description

Mass Specifies the mass of the object, in arbitrary units. Use 1 unit = 1 kg
unless you have a good reason to deviate. Higher mass requires more
force to move.

Drag Indicates how much air resistance is applied to the object when moving.
Higher drag means more force is required to move an object and stops a
moving object more quickly. A drag of 0 applies no air resistance.

Angular
Drag

Much like drag, indicates air resistance applied when spinning.

Use
Gravity

Determines whether Unity’s gravity calculations are applied to this
object. Gravity affects an object more or less depending on its drag.

Is
Kinematic

Allows you to control the movement of a rigidbody yourself. If an
object is kinematic, it will not be affected by forces.

Interpolate Determines how and whether motion for an object is smoothed. By
default, this property is set to None. With Interpolate, smoothing is
based on the previous frame, whereas with Extrapolate, it is based on
the next assumed frame. It is recommended to turn this on only if you
notice a lagging or stutter, and you want your physical objects to have
smoother motion.

Collision
Detection

Determines how collision is calculated. Discrete is the default setting,
and it is how all objects test against each other. The Continuous setting
can help if you are having trouble detecting collisions with very fast
objects. Be aware, though, that Continuous can have a large impact on
performance. The Continuous Dynamic setting uses discrete detection
against other discrete objects and continuous detection against other
continuous objects.

Constraints Specifies movement limitations that a rigidbody enforces on an object.
By default, these limitations are turned off. Freezing a position axis
prevents the object from moving along that axis, and freezing a rotation
axis prevents an object from rotating about that axis.

 TRY IT YOURSELF

Using Rigidbodies
Follow these steps to see a rigidbody in action:

1. Create a new project or scene. Add a cube to the scene and place it at (0, 1,
–5).

2. Run the scene. Notice how the cube floats in front of the camera.

3. Add a rigidbody to the object (by selecting Components > Physics >
Rigidbody).

4. Run the scene. Notice that the object now falls due to gravity.

5. Experiment with the drag and constraints properties and note their effects.

Enabling Collision
Now that you have objects moving around, it is time to start getting them to crash into
each other. For objects to detect collision, they need a component called a collider. A
collider is a perimeter that is projected around an object that can detect when other
objects enter it.

Colliders
Geometric objects such as spheres, capsules, and cubes already have collider
components on them when they are created. You can add a collider to an object that
doesn’t have one by selecting Component > Physics and then choosing the collider
shape you want from the menu. Figure 9.2 shows the various collider shapes you can
choose from.

FIGURE 9.2
The available colliders.

Once a collider is added to an object, the collider object appears in the Inspector. Table
9.2 describes the collider properties. In addition to these, if a collider is a sphere or
capsule, you might have an additional property, such as Radius. These geometric
properties behave exactly as you would expect them to.

TABLE 9.2 Collider Properties

Property Description

Edit
Collider

Allows you to graphically adjust the collider size (and in some cases
shape) in the Scene view.

Is
Trigger

Determines whether the collider is a physical collider or a trigger collider.
Triggers are covered in greater detail later in this hour.

Material Allows you to apply physics materials to objects to change the way in
which they behave. You can make an object behave like wood, metal, or

rubber, for instance. Physics materials are covered later in this hour.

Center Indicates the center point of the collider relative to the containing object.
Size Specifies the size of the collider.

TIP

Mix-and-Match Colliders
Using different-shaped colliders on objects can have some interesting effects. For
instance, making the collider on a cube much bigger than the cube makes the cube
look like it is floating above a surface. Likewise, using a smaller collider allows an
object to sink into a surface. Furthermore, putting a sphere collider on a cube
allows the cube to roll around like a ball. Have fun experimenting with the various
ways to make colliders for objects.

 TRY IT YOURSELF

Experimenting with Colliders
It’s time to try out some of the different colliders and see how they interact. Be
sure to save this exercise because you’ll use it again later in the hour. Follow
these steps:

1. Create a new project or scene. Add two cubes to it.

2. Place one cube at (0, 1, –5) and put a rigidbody on it. Place the other cube at
(0, –1, –5) and scale it to (4, .1, 4) with a rotation of (0, 0, 15). Put a
rigidbody on the second cube as well but uncheck the Use Gravity property.

3. Run the scene and notice how the top cube falls onto the other cube. They
then fall away from the screen.

4. Now, on the bottom cube, under the constraints of the rigidbody component,
freeze all three axes for both position and rotation.

5. Run the scene and notice how the top cube now falls and stops on the
bottom cube.

6. Remove the box collider from the top cube (by right-clicking the Box
Collider component and selecting Remove Component). Add a sphere
collider to the top cube (by selecting Component > Physics > Sphere
Collider). Give the bottom cube a rotation of (0, 0, 350).

7. Run the scene. Notice how the box rolls off of the ramp like a sphere, even
though it is a cube.

8. Experiment with various colliders. Another fun experiment is to change the
constraints on the bottom cube. Try freezing the y axis position and

unfreezing everything else. Try out different ways of making the boxes
collide.

TIP

Complex Colliders
You may have noticed a collider called the mesh collider. This collider is
specifically not discussed in this book because it is quite difficult to make and very
easy to get wrong. Basically, a mesh collider is a collider that uses a mesh to define
its shape. In actuality, the other colliders (box, sphere, and so on) are mesh
colliders; they are just simple built-in ones. While mesh colliders can provide for
very accurate collision detection, they can also hurt performance. A good habit to
get into (at least at this stage in your learning) is to compose a complex object with
several basic colliders. If you have a humanoid model, for example, try spheres for
the head and hands and capsules for the torso, arms, and legs. You will save on
performance and still have some very sharp collision detection.

Physics Materials
Physics materials can be applied to colliders to give objects varied physical properties.
For instance, you can use a rubber material to make an object bouncy or an ice
material to make it slippery. You can even make your own physics materials to
emulate specific materials of your choosing.
There are some premade physics materials in the Characters standard assets pack. To
import them, select Assets > Import Package > Characters. In the Import screen,
click the None button to deselect all and then scroll down. Check the box next to
Physics Materials near the bottom and click Import. This adds an Assets\Standard
Assets\PhysicsMaterials folder in your project that contains physics materials for
Bouncy, Ice, Metal, Rubber, and Wood. To create a new physics material, right-click
the Assets folder in the Project view and select Create > Physic Material or Create >
Physics Material 2D (if you’re working with 2D physics, covered in Hour 12, “2D
Game Tools”).
A physics material has a set of properties that determine how it behaves on a physical
level (see Figure 9.3). Table 9.3 describes the physics material properties. You can
apply a physics material to an object by dragging it from the Project view onto an
object with a collider.

FIGURE 9.3
The properties of physics materials.

TABLE 9.3 Physics Material Properties

Property Description

Dynamic
Friction

Specifies the friction applied when an object is already moving. Lower
numbers make an object more slippery.

Static
Friction

Specifies the friction applied when an object is stationary. Lower
numbers make an object more slippery.

Bounciness Specifies the amount of energy retained from a collision. A value of 1
causes the object to bounce without any loss of energy; it will bounce
forever. A value of 0 prevents the object from bouncing.

Friction
Combine

Determines how the friction of two colliding objects is calculated. The
friction can be averaged, the smallest or largest can be used, or they can
be multiplied.

Bounce
Combine

Determines how the bounce of two colliding objects is calculated. The
bounce can be averaged, the smallest or largest can be used, or they can
be multiplied.

The effects of a physics material can be as subtle or as distinct as you like. Try it out
for yourself and see what kinds of interesting behaviors you can create.

Triggers
So far, you have seen physical colliders—colliders that react in a positional and
rotational fashion using Unity’s built-in physics engine. If you think back to Hour 6,
“Game 1: Amazing Racer,” however, you can probably remember using another type
of collider. Remember how the game detected when the player entered the water
hazards and finish zone? That was the trigger collider at work. A trigger detects
collision just like normal colliders do, but it doesn’t do anything specific about it.
Instead, triggers call three specific methods that allow you, the programmer, to
determine what the collision means:
Click here to view code image

void OnTriggerEnter(Collider other) // is called when an object enters the trigger
void OnTriggerStay(Collider other) // is called while an object stays in the trigger
void OnTriggerExit(Collider other) // is called when an object exits the trigger

Using these methods, you can define what happens whenever an object enters, stays in,
or leaves the collider. For example, if you want to write a message to the Console
whenever an object enters the perimeter of a cube, you can add a trigger to the cube.
Then you attach a script to the cube with the following code:
Click here to view code image

void OnTriggerEnter(Collider other)
{
 print("Object has entered collider");
}

You might notice the one parameter to the trigger methods: the variable other of
type Collider. This is a reference to the object that entered the trigger. Using that
variable, you can manipulate the object however you want. For instance, to modify the
preceding code to write to the Console the name of the object that enters the trigger,
you can use the following:
Click here to view code image

void OnTriggerEnter(Collider other)
{
 print(other.gameObject.name + " has entered the trigger");
}

You could even go so far as to destroy the object entering the trigger with some code
like this:
Click here to view code image

void OnTriggerEnter(Collider other)
{
 Destroy(other.gameObject);
}

 TRY IT YOURSELF

Working with Triggers
In this exercise, you’ll get a chance to build an interactive scene with a
functioning trigger:

1. Create a new project or scene. Add a cube and a sphere to the scene.

2. Place the cube at (–1, 1, –5) and place the sphere at (1, 1, 5).

3. Create two scripts named TriggerScript and MovementScript. Place
TriggerScript on the cube and MovementScript on the sphere.

4. On the cube’s collider, check Is Trigger. Add a rigidbody to the sphere and
uncheck Use Gravity.

5. Add the following code to the Update() method of MovementScript:
Click here to view code image

float mX = Input.GetAxis("Mouse X") / 10;
float mY = Input.GetAxis("Mouse Y") / 10;
transform.Translate(mX, mY, 0);

6. Add the following code to TriggerScript:
Click here to view code image

void OnTriggerEnter (Collider other)
{
 print(other.gameObject.name + " has entered the cube");
}
void OnTriggerStay (Collider other)
{
 print(other.gameObject.name + " is still in the cube");
}
void OnTriggerExit (Collider other)
{
 print(other.gameObject.name + " has left the cube");
}

Be sure to place this code outside any methods but inside the class—that is,
at the same level of indentation as the Start() and Update() methods.

7. Run the scene. Notice how the mouse moves the sphere. Collide the sphere
with the cube and pay attention to the Console output. Notice how the two
objects don’t physically react, but they still interact. Can you work out which
cell of Figure 9.4 this interaction falls into?

FIGURE 9.4
Collider interaction matrix.

NOTE

Collisions Not Working
Not all collision scenarios result in collisions actually happening. Refer to Figure
9.4 to look up whether the interaction between two objects will create a collision, a
trigger method in code, or neither.
Static colliders are simply colliders on any game object that doesn’t have a
rigidbody component. They become rigidbody colliders when you add a rigidbody
component, and these become kinematic rigidbody colliders when you check the Is
Kinematic box. For each of these three colliders, you can also select Is Trigger if
desired. These options lead to the six types of colliders shown in Figure 9.4.

Raycasting
Raycasting is the act of sending out an imaginary line, called a ray, and seeing what it
hits. Imagine, for instance, looking through a telescope. Your line of sight is the ray,
and whatever you can see at the other end is what your ray hits. Game developers use
raycasting all the time for things like aiming, determining line of sight, gauging
distance, and more. There are a few Raycast methods in Unity. The two most
common uses are laid out here. The first Raycast method looks like this:
Click here to view code image

bool Raycast(Vector3 origin, Vector3 direction, float distance, LayerMask mask);

Notice that this method takes quite a few parameters. Also notice that it uses a variable
called Vector3 (which you’ve used before). Vector3 is a variable type that holds
three floats inside it. Using it is a great way to specify x, y, and z coordinates without
requiring three separate variables. The first parameter, origin, is the position at
which the ray starts. The second, direction, is the direction in which the ray
travels. The third parameter, distance, determines how far out the ray will go, and
the final variable, mask, determines what layers will be hit. You can omit both the
distance and the mask variables. If you do, the ray will travel an infinite (or very
far, in this case) distance and hit all object layers.
As mentioned earlier, there are many things you can do with rays. If you want to
determine whether something is in front of the camera, for example, you can attach a
script with the following code:
Click here to view code image

void Update()
{
 // cast the ray from the camera's position in the forward direction
 if (Physics.Raycast(transform.position, transform.forward, 10))
 print("There is something in front of the camera!");

}

Another way you can use this method is to find the object that the ray collided with.
This version of the method uses a special variable type called RaycastHit. Many
versions of the Raycast method use distance (or don’t) and layer mask (or
don’t). The most basic way to use this version of the method, though, looks something
like this:
Click here to view code image

bool Raycast(Vector3 origin, Vector3 direction, out Raycast hit, float distance);

There is one new interesting thing about this version of the method. You might have
noticed that it uses a new keyword that you have not seen before: out. This keyword
means that when the method is done running, the variable hit will contain whatever
object was hit. The method effectively sends the value back out when it is done. It
works this way because the Raycast() method already returns a Boolean variable
that indicates whether it hit something. Since a method cannot return two variables,
you use out to get more information.

 TRY IT YOURSELF

Casting Some Rays
In this exercise, you will create an interactive “shooting” program. This program
will send a ray from the camera and destroy whatever objects it comes into
contact with. Follow these steps:

1. Create a new project or scene and add four spheres to it.

2. Place the spheres at (–1, 1, –5), (1, 1.5, –5), (–1, –2, 5), and (1.5, 0, 0).

3. Create a new script called RaycastScript and attach it to the Main Camera.
Inside the Update() method for the script, add the following:

Click here to view code image

float dirX = Input.GetAxis ("Mouse X");
float dirY = Input.GetAxis ("Mouse Y");
// opposite because we rotate about those axes
transform.Rotate (dirY, dirX, 0);
CheckForRaycastHit (); // this will be added in the next step

4. Add the method CheckForRaycastHit() to your script by adding the
following code outside a method but inside the class:

Click here to view code image

void CheckForRaycastHit() {
 RaycastHit hit;
 if (Physics.Raycast (transform.position, transform.forward, out hit)) {
 print (hit.collider.gameObject.name + " destroyed!");

 Destroy (hit.collider.gameObject);
 }
}

5. Run your scene. Notice how moving the mouse moves the camera. Try to
center the camera on each sphere. Notice how the sphere is destroyed and
the message is written to the Console.

Summary
In this hour, you have learned about object interactions through collision. First, you
learned about the basics of Unity’s physics capabilities with rigidbodies. Then you
worked with various types of colliders and collision. From there, you learned that
collision is more than just stuff bouncing around, and you got hands-on with triggers.
Finally, you learned to find objects by using raycasting.

Q&A
Q. Should all my objects have rigidbodies?
A. Rigidbodies are useful components that serve largely physical roles. That said,

adding rigidbodies to every object can have strange side effects and may reduce
performance. A good rule of thumb is to add components only when they are
needed and not preemptively.

Q. There are several colliders we didn’t talk about. Why not?
A. Most colliders either behave the same way as the ones covered here or are

beyond the scope of this text (and are, therefore, omitted). Suffice it to say that
this text still provides what you need to know to make some very fun games.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. What component is required on an object if you want it to exhibit physical traits

such as falling?
2. True or False: An object can have only a single collider on it.
3. What sorts of things are raycasts useful for?

Answers
1. Rigidbody

2. False. An object can have many, and varied, colliders on it.
3. Determining what an object can see and finding objects along line of sight as

well as finding distances between objects

Exercise
In this exercise, you’ll create an interactive application that uses motion and triggers.
The exercise requires you to creatively determine a solution (because one is not
presented here). If you get stuck and need help, you can find the solution to this
exercise, called Hour 9 Exercise, in the book assets for Hour 9.

1. Create a new project or scene. Add a cube to the scene and position it at (–1.5, 0,
–5). Scale the cube to (.1, 2, 2) and rename it LTrigger.

2. Duplicate the cube (by right-clicking the cube in the Hierarchy view and
selecting Duplicate). Name the new cube RTrigger and place it at (1.5, 0, –5.)

3. Add a sphere to your scene and place it at (0, 0, –5). Add a rigidbody to the
sphere and uncheck Use Gravity.

4. Create a script named TriggerScript and place it on both LTrigger and RTrigger.
Create a script called MotionScript and place it on the sphere.

5. Now comes the fun part. You need to create the following functionality in your
application:

 The player should be able to move the sphere with the arrow keys.
 When the sphere enters, exits, or stays in either of the triggers, the
corresponding message should be written to the Console. The message
should indicate which of the three it is and the name of the trigger that the
sphere collided with (LTrigger or RTrigger).

 There is a hidden “gotcha” built into this exercise that you need to
overcome in order to make this work.

Good luck!

HOUR 10
Game 2: Chaos Ball

What You’ll Learn in This Hour:
 How to design the game Chaos Ball
 How to build the Chaos Ball arena
 How to build the Chaos Ball entities
 How to build the Chaos Ball control objects
 How to further improve Chaos Ball

It is time once again to use what you have learned to make another game. In this hour,
you’ll make the game Chaos Ball, which is a fast-paced arcade-style game. You’ll start
by learning about the basic design elements of the game. From there, you’ll build
arena and game objects. Each object type will be made unique and given special
collision properties. Then you’ll add interactivity to make the game playable. You’ll
finish this hour by playing the game and making any necessary tweaks to improve the
experience.

TIP

Completed Project
Be sure to follow along in this hour to build the complete game project. In case you
get stuck, you can find a completed copy of the game in the book assets for Hour
10. Take a look at it if you need help or inspiration!

Design
In Hour 6, “Game 1: Amazing Racer,” you learned a lot about game design elements.
This time, you’ll get right into them.

The Concept

This is a game slightly akin to Pinball or Breakout. The player will be in an arena.
Each of the four corners will have a color, and four balls with corresponding colors
will be floating around. Amid the four colored balls, there will be several yellow balls,
called chaos balls. Chaos balls exist solely to get in the player’s way and make the
game challenging. They are smaller than the four colored balls, but they also move
faster. Players will have a flat surface with which they will attempt to knock the
colored balls into the correct corners.

The Rules
The rules for this game state how to play and also allude to some of the properties of
the objects. The rules for Chaos Ball are as follows:

 The player wins when all four balls are in the correct corners. There is no loss
condition.
 Hitting the correct corner causes a ball to disappear and the corner light to go
out.
 All objects in the game are super-bouncy and lose no energy on impact.
 No ball (or player) can leave the arena.

The Requirements
The requirements for this game are simple. This is not a graphically intense game;
rather, it relies on scripting and interaction for its entertainment value. The
requirements for Chaos Ball are as follows:

 A walled arena to play the game in.
 Textures for the arena and game objects. These are provided in the Unity
standard assets.
 Several colored balls and chaos balls. These will be generated in Unity.
 A character controller. This is provided by the Unity standard assets.
 A game manager. This will be created in Unity.
 A bouncy physics material. This will be created in Unity.
 Colored corner indicators. These will be generated in Unity.
 Interactive scripts. These will be written in MonoDevelop.

The Arena
The first thing you want to create is an area where the action will take place. The term
arena is used here to give the idea that this level is quite small and also walled in.
Neither the player nor any balls should be able to leave the arena. Otherwise, the arena
is quite simple, as shown in Figure 10.1.

FIGURE 10.1
The arena.

Creating the Arena
As mentioned earlier, creating the arena is going to be easy because of the simplicity
of the basic arena map. To create the arena, follow these steps:

1. Create a new project called Chaos Ball.

2. Click Assets > Import Package and select the Characters and Environment
packages.

3. Add a plane to the scene (by selecting GameObject > 3D > Plane). Position
the plane at (0, 0, 0) and give it a scale of (5, 1, 5).

4. Delete the Main Camera.

5. Add a cube to the scene. Place the cube at (–25, 1.5, 0) and scale it to (1.5, 3,
51). Notice how it becomes a side wall for the arena. Rename the cube Wall 1.

6. Save the scene as Main in a Scenes folder.

TIP

Consolidating Objects
You might be wondering why you created only a single wall when the arena will
obviously need four. The idea is that you want to do as little redundant, tedious
work as possible. Often, if you require several objects that are very similar, you can
create one object and then duplicate it multiple times. In this instance, you set up a
single wall with its materials and properties and then simply copy it three times.
You repeat the same process for the corner nodes, the chaos balls, and the colored
balls. Hopefully you can see that a little planning can save you a fair bit of time.
It’s also worth noting that this entire process can be made even easier with the use

of prefabs. Since somebody (I won’t mention names) doesn’t cover prefabs until
the next hour, you can just do it this way for now.

Texturing
Right about now, the arena is looking pretty pitiful and bland. Everything is white, and
there is only a single wall. The next step is to add some textures to liven the place up.
You need to texture two objects specifically: the wall and the ground. Feel free to
experiment with the texturing as you complete this step. You can make it more
interesting if you’d like, but begin by following these steps:

1. Create a new folder called Materials under Assets in the Project view. Add a
material to the folder (by right-clicking the folder and selecting Create >
Material). Name the material Wall.

2. Apply the Sand Albedo texture to the Wall material in the Inspector view. You
can do this by dragging the material onto the Albedo property or by clicking
the circle selector next to the word Albedo in the Inspector (see Figure 10.2).

3. Drag the Smoothness slider to a value of 0.

4. Set the X axis tiling to 10.

5. Click and drag the wall material onto the wall object in the Scene view.

FIGURE 10.2
The wall material.

Next, you need to make the ground more interesting. Unity comes with some great
water shaders, and you can use them again here:

1. In the Project view, navigate to the folder Standard Assets\Environment\
Water\Water4\Prefabs. Drag the Water4Advanced asset into the scene.

2. Position the water centrally, at (0, .5, 0).

Creating a Super-Bouncy Material
You want objects to bounce off the walls without losing any energy, and what you
need for this is a super-bouncy material. If you recall, Unity has a set of physics
materials available. The bouncy material provided, however, is not quite bouncy
enough for your needs. Therefore, you need to create a new material, as follows:

1. Right-click the Materials folder and select Create > Physic Material. Name
the new material SuperBouncy.

2. Set the properties for the super-bouncy material as shown in Figure 10.3.
Basically, you want to ensure that the balls are 100% bouncy, so they keep
moving at the same speed.

FIGURE 10.3
SuperBouncy material settings.

At this point, you could place the SuperBouncy physics material directly onto the
collider of your wall. The problem, however, is that you will need to add this material
onto all the walls, all the balls, and the player. Basically, everything that collides in
this game needs this material. You can therefore apply the SuperBouncy material as
the default material for all colliders by using the Physics Settings menu. Follow these
steps:

1. Select Edit > Project Settings > Physics. The Physics Manager menu opens
in the Inspector view (see Figure 10.4).

2. Apply the SuperBouncy material to the Default Material property.

FIGURE 10.4
The Physics Manager menu.

This menu is also where you can modify the fundamentals of how physics (collision,
gravity, and so on) behave. For now though, you should resist the urge to be all-
powerful and leave reality as it is.

Finishing the Arena
Now that the wall and ground are complete, you can finish the arena. The hard work
has been done, and all you need to do at this point is duplicate the walls (by right-
clicking in the Hierarchy view and selecting Duplicate). The exact steps are as
follows:

1. Duplicate the wall once. Place the new instance at (25, 1.5, 0).

2. Duplicate the wall again. Place it at (0, 1.5, 25) with a rotation of (0, 90, 0).

3. Duplicate the wall created in step 2 (the one that’s turned) and place it at (0,
1.5, –25).

4. Create an empty game object called Walls. Set the position of the new object
to (0, 0, 0). Group the four walls you created under this new placeholder object.

Your arena should now have four walls without any gaps or seams (refer to Figure
10.1).

Game Entities
In this section you’ll create the various game objects required for playing the game.
Just as with the arena wall, it is easier to create one instance of each entity and then
duplicate it.

The Player
The player in this game will be a modified First Person character controller. When you
created this project, you should have imported the character controller’s package. You
will also want to raise the controller’s camera up so that the player has a better field of

vision while playing. Follow these steps:

1. Drag an FPSController character controller into the scene, from the folder
Assets\Characters\FirstPersonCharacter\Prefabs.

2. Position the controller at (0, 1, 0).

3. Expand the FPSController object in the Hierarchy view and locate the
FirstPersonCharacter child object (which has a camera on it).

4. Position the FirstPersonCharacter at (0, 5, –3.5) with a rotation of (43, 0, 0).
The camera should now be above, behind, and slightly looking down on the
controller.

The next thing to do is to add a bumper to the controller. The bumper will be the flat
surface off which the player will bounce balls. To do this, follow these steps:

1. Add a cube to the scene and rename the cube Bumper. Scale the bumper to
(3.5, 3, 1).

2. In the Hierarchy view, click and drag the bumper onto the FPSController
object to nest the bumper onto the controller.

3. Change the position of the bumper to (0, 0, 1) with a rotation of (0, 0, 0). The
bumper is now slightly in front of the controller.

4. Give the bumper color by creating a new material (not a physics material)
called BumperColor. Set the albedo color to something of your choosing and
drag the material onto the bumper.

The last thing to do is to tweak the FPSController’s default settings to make it more
suitable for this game. Carefully set everything as per Figure 10.5, noting that the
settings that differ from the defaults are bold.

FIGURE 10.5
The FPSController script settings.

The Chaos Balls
The chaos balls will be the fast and wild balls flying around the arena and disrupting
the player. In many ways, they are similar to the colored balls, so you will be working
to give them universally applicable assets. To create the first chaos ball, follow these
steps:

1. Add a sphere to the scene. Rename the sphere Chaos and position it at (12, 2,
12) with a scale of (.5, .5, .5).

2. Create a new material (not a physics material) for the chaos ball called
ChaosBall and set the albedo color to a bright yellow color. Click and drag the
material onto the sphere.

3. Add a rigidbody to the sphere. As shown in Figure 10.6, uncheck Use
Gravity. Change the Collision Detection property to Continuous Dynamic.
Under the Constraints property, freeze the y position because you don’t want
the balls to be able to go up or down.

FIGURE 10.6
The chaos ball rigidbody component.

4. Open the Tag Manager (by selecting Edit > Project Settings > Tags &
Layers), expand the Tags section by clicking the arrow next to Tags, and add
the tag Chaos. While you’re here, go ahead and add the tags Green, Orange,
Red, and Blue as well, as they are all used later.

5. Select the Chaos sphere and change its tag to Chaos in the Inspector view (see
Figure 10.7).

FIGURE 10.7
Choosing the Chaos tag.

The ball is now complete, but it still doesn’t do anything. You need to create a script to
move the ball all around the arena. In this case, create a script called VelocityScript
and attach it to the chaos ball. Move the script into a Scripts folder. Listing 10.1
contains the full code for VelocityScript.

Listing 10.1 VelocityScript.cs
Click here to view code image

using UnityEngine;
public class VelocityScript : MonoBehaviour
{
 public float startSpeed = 50f;
 void Start ()
 {
 Rigidbody rigidBody = GetComponent<Rigidbody> ();
 rigidBody.velocity = new Vector3 (startSpeed, 0, startSpeed);
 }
}

Run your scene and watch the ball begin to fly around the arena. At this point, the
chaos ball is finished. In the Hierarchy view, duplicate the chaos ball four times.
Scatter each ball around the arena (be sure to only change the x and z positions) and
give each of them a random y axis rotation. Remember that movement along the y axis
is locked, so make sure that each ball stays at a y position of 2. Finally, create an
empty GameObject called Chaos Balls, position it at (0, 0, 0), and child the balls to it
to keep your Hierarchy tidy.

The Colored Balls
Whereas the chaos balls are actually a color (yellow), they are not considered colored
balls in this game; rather, the colored balls are the four specific balls needed to win the
game. They should be red, orange, blue, and green. As with the chaos balls, you can
make a single ball and then duplicate it to make the creation of the colored balls easier.
To create the first ball, follow these steps:

1. Add a sphere to the scene and rename it Blue Ball. Position the sphere
somewhere near the middle of the arena and make sure the y position is 2.

2. Create a new material called BlueBall and set its color to blue, the same way
you set the color of the chaos balls to yellow. While you’re at it, go ahead and
create RedBall, GreenBall, and OrangeBall materials and set each one to the
appropriate color. Click and drag the BlueBall material onto the sphere.

3. Add a rigidbody to the sphere. Uncheck Use Gravity, set the collision
detection to Continuous Dynamic, and freeze the y position under Constraints.

4. Previously, you created the Blue tag. Now change the sphere’s tag to Blue just
as you set the tag for the chaos ball (refer to Figure 10.7).

5. Attach the velocity script to the sphere. In the Inspector, locate the Velocity
Script (Script) component and change the Start Speed property to 25 (see
Figure 10.8). This causes the sphere to initially move more slowly than the

chaos balls.

FIGURE 10.8
Changing the Start Speed property.

If you run the scene now, you should see the blue ball moving rapidly around the
arena.
Now you need to create the other three balls. Each one will be a duplicate of the blue
ball. To create the other balls, follow these steps:

1. Duplicate the Blue Ball object. Rename the new ball to its color: Red Ball,
Orange Ball, or Green Ball.

2. Give the new ball a tag corresponding to its name. It is important for the name
and the tag to be the same.

3. Drag the appropriate color material onto the new ball. It is important for the
ball to be the same color as its name.

4. Give the ball a random location and rotation in the arena but ensure that its y
position is 2.

At this point, the game entities are complete. If you run the scene, you see all the balls
bouncing around the arena.

The Control Objects
Now that you have all the pieces in place, it is time to gamify them. That is, it is time
to turn them into a playable game. To do that, you need to create the four corner goals,
the goal scripts, and the game controller. When you are done, you will have a game.

The Goals
Each of the four corners has a specific colored goal that corresponds with a colored
ball. The idea is that when a ball enters a goal, the goal will check the ball’s tag. If the
tag matches the color of the goal, there is a match. When a match is found, the ball is
destroyed and the goal is set to solved. As with the ball objects earlier, you can
configure a single goal and then duplicate it to match your needs.
To set up the initial goal, follow these steps:

1. Create an empty game object (by selecting GameObject > Create Empty).
Rename the game object Blue Goal and assign the tag Blue to it. Position the
game object at (–22, 2, –22).

2. Attach a box collider to the goal and check the Is Trigger property. Change
the size of the box collider to (3, 2, 3).

3. Attach a light to the goal (by selecting Component > Rendering > Light).
Make it a point light and make it the same color as the goal (see Figure 10.9).
Change the Intensity of the light to 3 and the Indirect Multiplier to 0.

FIGURE 10.9
The blue goal.

Next, you need to create a script called GoalScript and attach it to the blue goal.
Listing 10.2 shows the contents of the script.

Listing 10.2 GoalScript.cs
Click here to view code image

using UnityEngine;
public class GoalScript : MonoBehaviour
{
 public bool isSolved = false;
 void OnTriggerEnter (Collider collider)
 {
 GameObject collidedWith = collider.gameObject;
 if (collidedWith.tag == gameObject.tag)
 {
 isSolved = true;
 GetComponent<Light>().enabled = false;
 Destroy (collidedWith);
 }
 }
}

As you can see in the script, the OnTriggerEnter() method checks the tag of
every object that contacts it against its own tag. If they match, the object is destroyed,
the goal is flagged as solved, and that goal’s light is disabled.

When the script is complete and attached to the goal, it is time to duplicate it. To create
the other goals, follow these steps:

1. Duplicate the Blue Goal. Name the new goal according to its color: Red Goal,
Green Goal, or Orange Goal.

2. Change the tag of the goal to its corresponding color.

3. Change the color of the point light to the goal’s corresponding color.

4. Position the goal. The colors can go in any corner as long as each goal gets its
own corner. The three other corner positions are (22, 2, –22), (22, 2, 22), and (–
22, 2, 22).

5. Organize the goals under a new empty game object called Goals.

All the goals should now be set up and operational.

The Game Manager
The last element needed to finish the game is the game manager. This controller will
be responsible for checking each goal every frame and determining when all four goals
are solved. For this particular game, the game manager is very simple. To create the
game manager, follow these steps:

1. Add an empty game object to the scene. Move it someplace out of the way.
Rename it Game Manager.

2. Create a script called GameManager and add the code from Listing 10.3 to it.
Attach the script to the game manager.

3. With the game manager selected, click and drag each goal to its corresponding
property on the Game Manager (Script) component (see Figure 10.10).

Listing 10.3 Game Control Script
Click here to view code image

using UnityEngine;
public class GameManager : MonoBehaviour
{
 public GoalScript blue, green, red, orange;
 private bool isGameOver = true;
 void Update ()
 {
 // If all four goals are solved then the game is over
 isGameOver = blue.isSolved && green.isSolved && red.isSolved &&
 orange.isSolved;
 }
void OnGUI()
 {
 if(isGameOver)

 {
 Rect rect = new Rect (Screen.width / 2 - 100, Screen.height / 2 - 50, 200, 75);
 GUI.Box (rect, "Game Over");
 Rect rect2 = new Rect (Screen.width / 2 - 30, Screen.height / 2 - 25, 60, 50);
 GUI.Label (rect2, "Good Job!");
 }
 }
}

FIGURE 10.10
Adding the goals to the game controller.

As you can see in the script shown in Listing 10.3, the game manager has a reference
to each of the four goals. Every frame, the manager checks to see if all the goals are
solved. If they are, the manager sets the variable isGameOver to true and displays
the “game over” message on the screen.
Congratulations. Chaos Ball is now complete!

Improving the Game
Even though Chaos Ball is a complete game, it is hardly as good as it could be. Several
features that would greatly improve gameplay have been omitted. They were left out
for brevity and to give you an opportunity to experiment with the game and make it
better. In a way, you could say that Chaos Ball is now a complete prototype. It is a
playable example of the game, but it lacks polish. You are encouraged to go back
through this hour and look for ways to make the game better. Think about the
following as you play it:

 Is the game too easy or hard?
 What would make it easier or harder?
 What would give it a “wow” factor?
 What parts of the game are fun? What parts of the game are tedious?

The exercise at the end of this hour gives you an opportunity to improve the game and
add some features that will improve it. Note that if you get any errors, it means you

missed a step. Be sure to go back through and double-check everything to resolve any
errors that arise.

Summary
In this hour, you made the game Chaos Ball. You started by designing the game, based
on the stated concept, rules, and requirements. From there, you sculpted the arena and
learned that sometimes you can make a single object and duplicate it to save time.
From there, you created the player, the chaos balls, the colored balls, the goals, and the
game controller. You finished by playing the game and thinking of ways to improve it.

Q&A
Q. Why use Continuous Dynamic collision detection on the chaos balls? I

thought this setting reduced performance.
A. Continuous collision detection can, in fact, reduce performance. In this instance,

it is needed, however. The chaos balls are small and fast enough that sometimes
they can pass right through the walls.

Q. Why did I need to create a Chaos tag if I never used it?
A. You now have this tag ready for making improvements in the following

exercise.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. How does a Chaos Ball player lose the game?
2. What is the positional axis on which all the ball objects are constrained?
3. True or False: The goals in Chaos Ball use the method OnTriggerEnter()

to determine whether an object is the correct ball.
4. Why are some basic features omitted from the game Chaos Ball?

Answers
1. This is a trick question. The player cannot lose the game.
2. The y axis
3. True
4. To give you a chance to add them

Exercise
One of the best parts of making games is that you get to make them the way you want.
Following a guide can be a good learning experience, but you don’t get the satisfaction
of making a custom game. In this exercise, you have an opportunity to modify the
game a little to make something more unique. Exactly how you change the game is up
to you. Here are some suggestions:

 Try adding a button that allows the player to play again whenever the game is
completed. (Graphical user interface elements haven’t been covered yet, but
this feature exists in the Amazing Racer game you created in Hour 6, so see if
you can figure it out.)

 Try adding a timer so that the player knows how long it took to win.
 Try adding variations of the chaos balls.
 Try adding a chaos goal that you must bounce all the chaos balls into.
 Try changing the size or shape of the player’s bumper.
 Try making a complex bumper out of many shapes.
 Try covering up the water with a terrain, plane, or other game objects around
the border of the arena.

HOUR 11
Prefabs

What You’ll Learn in This Hour:
 The basics of prefabs
 How to work with custom prefabs
 How to instantiate prefabs in code

A prefab is a complex object that has been bundled up so that it can be re-created over
and over with little extra work. In this hour, you’ll learn all about them, starting with
what they are and what they do. From there, you’ll learn how to create prefabs in
Unity. You’ll learn about the concept of inheritance. You’ll finish the lesson by
learning how to add prefabs to a scene both through the editor and through code.

Prefab Basics
As mentioned earlier, a prefab is a special type of asset that bundles up game objects.
Unlike normal game objects that exist only as a part of a single scene, prefabs are
stored as assets. As such they can be seen in the Project view and reused over and over
across many scenes. You can, for example, build a complex object, such as an enemy,
turn it into a prefab, and then use that prefab to build an army. You can also create
copies of prefabs with code. This allows you to generate a nearly infinite number of
objects at runtime. The best part is that any game object or collection of game objects
can be put in a prefab. The possibilities are endless!

NOTE

Thought Exercise
If you are having trouble understanding the importance of prefabs, consider this: In
the preceding hour, you made the game Chaos Ball. When making that game, you
had to make a single chaos ball and duplicate it four times. What if you want to
make changes to all chaos balls at the same time, regardless of where they are in
your scene or project? Doing so can be difficult—sometimes prohibitively so.

Prefabs make it incredibly easy, though.
What if you have a game that uses an orc enemy type? Again, you could set up a
single orc and then duplicate it many times, but what if you want to use the orc
again in another scene? You have to completely remake the orc in the new scene. If
the orc were a prefab, though, it would be a part of the project and could be reused
again in any number of scenes. Prefabs are an important aspect of Unity game
development.

Prefab Terminology
You need to know some particular terminology related to working with prefabs. If you
are familiar with the concepts of object-oriented programming, you may notice some
similarities:

 Prefab: The prefab is the base object. It exists only in the Project view. Think
of it as the blueprint.
 Instance: An instance is an actual object of the prefab in a scene. If the prefab
is a blueprint for a car, an instance is an actual car. If an object in the Scene
view is referred to as a prefab, it is really a prefab instance. The phrase
instance of a prefab is synonymous with object of a prefab or even clone of a
prefab.
 Instantiate: Instantiation is the process of creating an instance of a prefab.
Instantiate is a verb, used like this: “I need to instantiate an instance of this
prefab.”
 Inheritance: With prefabs, inheritance is not the same as standard
programming inheritance. In this case, the term inheritance refers to the nature
by which all instances of a prefab are linked to the prefab itself. This is covered
in greater detail later in this hour.

Prefab Structure
Whether you know it or not, you have already worked with prefabs. Unity’s character
controllers are prefabs. To instantiate an object of a prefab into a scene, you only need
to click and drag it into place in the Scene view or Hierarchy view (see Figure 11.1).
When looking at the Hierarchy view, you can always tell which objects are instances
of prefabs because they appear blue. This can be a subtle color difference, so note that
you can also tell that an object is a prefab by looking at the top of the Inspector (see
Figure 11.2).
Just as with non-prefab complex objects, complex instances of prefabs also have an
arrow that allows you to expand them and modify the objects inside.

FIGURE 11.1
Adding a prefab instance to a scene.

FIGURE 11.2
The appearance of prefab instances in the Inspector.

Because a prefab is an asset that belongs to a project and not to a particular scene, you
can edit a prefab in the Project view or the Scene view. If you edit an instance of a
prefab in the Scene view, you must save the changes back to the prefab by clicking the
Apply button in the top right of the Inspector (refer to Figure 11.2).
Just like game objects, prefabs can be complex. You can edit the child elements of a
prefab by clicking the arrow on the right side of the prefab (see Figure 11.3). Clicking

this arrow expands the object for editing. Clicking again condenses the prefab again.

FIGURE 11.3
Expanding the contents of a prefab in the Project view.

Working with Prefabs
Using Unity’s built-in prefabs is nice, but often you want to create your own. Creating
a prefab is a two-step process. The first step is to create the prefab asset. The second
step is to fill the asset with some content.
Creating a prefab is really easy. Simply right-click in the Project view and select
Create > Prefab (see Figure 11.4). A new prefab appears, and you can name it
whatever you want. Because the prefab is empty, it appears as an empty white box.

FIGURE 11.4
Creating a new prefab.

As with all other assets, it is generally a good idea to start by creating a folder under
Assets in the Project view to contain your prefabs. Creating a folder to contain your
prefabs is not required, but it is a great organization step and should be done to prevent
confusion between prefabs and original assets (such as meshes or sprites).
The next step is to fill the prefab with something. Any game object can go into a
prefab. You simply need to create the object once in the Scene view and then click and
drag it onto the prefab asset.
Alternatively, you can shorten this process to a single step by simple dragging any
game object from the Hierarchy view down into the project view. Doing so creates the
prefab, names it, and fills it—all at the same time (see Figure 11.5).

FIGURE 11.5
A faster way to create prefabs.

 TRY IT YOURSELF

Creating a Prefab
Follow these steps to create a prefab of a complex game object, which you will
use later in this hour (so don’t delete it!):

1. Create a new project or scene. Add a cube and a sphere to the scene.
Rename the cube Lamp.

2. Position the cube at (0, 1, 0) with a scale of (.5, 2, .5). Add a rigidbody to
the cube. Position the sphere at (0, 2.2, 0). Put a point light component on
the sphere.

3. Click and drag the sphere in the Hierarchy view onto the cube to nest the

sphere under the cube (see Figure 11.6).

FIGURE 11.6
The sphere nested under the cube.

4. Create a new folder under the Assets folder in the Project view. Name the
new folder Prefabs.

5. In the Hierarchy view, click and drag the Lamp game object (which contains
the sphere) into the Project view (see Figure 11.7). Notice that this creates a
prefab that looks like a lamp. Also notice that the cube and sphere in the
Hierarchy view turn blue. At this point, you can delete the cube and sphere
from the scene because they are now contained in the prefab.

FIGURE 11.7
Adding an object to a prefab.

Adding a Prefab Instance to a Scene
Once a prefab asset is created, you can add it as many times as you want to a scene or
any number of scenes in a project. To add a prefab instance to a scene, all you need to
do is click and drag the prefab from the Project view into place in the Scene view, or
Hierarchy view.
If you drag into the Scene view, the prefab is instantiated where you drag. If you drag
into a blank part of the Hierarchy view, its initial position is whatever is set in the
prefab. If you drag onto another object in the Hierarchy view, the prefab becomes a
child of that object.

 TRY IT YOURSELF

Creating Multiple Prefab Instances

In the Try It Yourself “Creating a Prefab,” you made a Lamp prefab. This time,
you will be using that prefab to create many lamps in a scene. Be sure to save
the scene created here because you will use it later in this hour. Follow these
steps:

1. Create a new scene in the same project used for the Try It Yourself
“Creating a Prefab,” and call this scene Lamps.

2. Create a plane and ensure that it is positioned at (0, 0, 0). Rename the plane
Floor. Optionally, give the floor a gray material so that shadows appear
more clearly on it.

3. Drag your Lamp prefab onto the floor in the Scene view. Notice how the
lamp tracks to the collider of the floor.

4. Drag three more Lamp prefabs onto the floor and position them near the
corners (see Figure 11.8).

FIGURE 11.8
Placing lamps in the scene.

Inheritance
When the term inheritance is used in conjunction with prefabs, it refers to the link by
which the instances of a prefab are connected to the actual prefab asset. That is, if you

change the prefab asset, all objects of the prefab are also automatically changed. This
is incredibly useful. You would be like many other game programmers if you put a
large number of prefab objects into a scene only to realize that they all need a minor
change. Without inheritance, you would have to change each one individually.
There are two ways you can change a prefab asset. The first is by making changes in
the Project view. Just selecting the prefab asset in the Project view brings up its
components and properties in the Inspector view. If you need to modify a child
element, you can expand the prefab (as described earlier this hour) and change those
objects in a similar fashion.
Another way you can modify a prefab asset is to drag an instance into the scene. From
there, you can make any major modifications you would like. When you’re finished,
simply click Apply at the top right of the Inspector.

 TRY IT YOURSELF

Updating Prefabs
So far in this hour, you have created a prefab and added several instances of it to
a scene. Now you have a chance to modify the prefab and see how it affects the
assets already in the scene. For this exercise, you should use the scene created in
the Try It Yourself “Creating Multiple Prefab Instances.” If you have not
completed that one yet, you need to do so before following these steps:

1. Open the Lamps scene from the Try It Yourself “Creating Multiple Prefab
Instances.”

2. Select the Lamp prefab from the Project view and expand it (by clicking the
arrow on the right side). Select the Sphere child game object. In the
Inspector, change the color of the light to red. Notice how the prefabs in the
scene automatically change (see Figure 11.9).

FIGURE 11.9
The modified lamp instances.

3. Select one of the lamp instances in the scene. Expand it by clicking the
arrow to the left of its name in the Hierarchy view and then select the
Sphere child object. Change the sphere’s light back to white. Notice that the
other prefab objects don’t change.

4. With the lamp still selected, click Apply to update the prefab asset with the
modified lamp instance’s changes. Notice that all the instances change back
to a white light.

Breaking Prefab Links
Sometimes you need to break a prefab instance’s link to the prefab asset. You might
want to do this if you need an object of the prefab but you don’t want the object to
change if the prefab ever changes. Breaking an instance’s link to the prefab does not
change the instance in any way. The instance still maintains all its objects,
components, and properties. The only difference is that it is no longer an instance of
the prefab and therefore is no longer affected by inheritance.
To break an object’s link to the prefab asset, simply select the object in the Hierarchy
view. After selecting it, click GameObject > Break Prefab Instance. The object does
not change, but its name turns from blue to black. After the link is broken, it can be
reapplied by clicking Revert in the Inspector view.

Instantiating Prefabs Through Code
Placing prefab objects into a scene is a great way to build a consistent and planned
level. Sometimes, however, you want to create instances at runtime. Maybe you want
enemies to respawn, or you want them to be randomly placed. It is also possible that
you need so many instances that placing them by hand is no longer feasible. Whatever
the reason, instantiating prefabs through code is a good solution.
There are two ways to instantiate prefab objects in a scene, and they both use the
Instantiate() method. The first way is to use Instantiate() like this:

Instantiate(GameObject prefab);

As you can see, this method simply reads in a GameObject variable and makes a
copy of it. The location, rotation, and scale of the new object are the same as those of
the one being cloned. The second way to use the Instantiate() method is like
this:
Click here to view code image

Instantiate(GameObject prefab, Vector3 position, Quaternion rotation);

This method requires three parameters. The first is still the object to copy. The second
and third parameters are the desired position and rotation of the new object. You might
have noticed that the rotation is stored in something called a quaternion. Just know
that this is how Unity stores rotation information. (The true application of the
quaternion is beyond the scope of this hour.)
The exercise at the end of this hour shows an example of the two methods of
instantiating objects in code.

Summary
In this hour, you have learned all about prefabs in Unity. You started by learning the
basics of prefabs: the concept, terminology, and structure. From there, you learned to
make your own prefabs. You explored how to create them, add them to a scene,
modify them, and break their links. Finally, you learned how to instantiate prefab
objects through code.

Q&A
Q. Prefabs seem a lot like classes in object-oriented programming (OOP). Is

that accurate?
A. Yes. There are many similarities between classes and prefabs. Both are like

blueprints, objects of both are created through instantiation, and objects of both
are linked to the original.

Q. How many objects of a prefab can exist in a scene?

A. As many as you want. Be aware, though, that after you get above a certain
number, the performance of the game will be impacted. Every time you create an
instance, it is permanent until it is destroyed. Therefore, if you create 10,000
instances, there will be 10,000 of them just sitting in your scene.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. What is the term for creating an instance of a prefab asset?
2. What are two ways to modify a prefab asset?
3. What is inheritance?
4. How many ways can you use the Instantiate() method?

Answers
1. Instantiation
2. You can modify a prefab asset through the Project view or by modifying an

instance in the Scene view and clicking Apply in the Inspector.
3. It is the link that connects the prefab asset to its instances. It basically means that

when the asset changes, the objects change as well.
4. Two. You can specify just the prefab or you can also specify the position and

rotation.

Exercise
In this exercise, you’ll work once again with the prefab you made earlier in this hour.
This time, you will instantiate objects of the prefab through code and hopefully have
some fun with it:

1. Create a new scene in the same project where you’re storing the Lamp prefab.
Click the Lamp prefab in the Project view and change its position to (–1, 0, –5).

2. Delete the Directional Light game object from the scene.
3. Add an empty game object to the scene and rename it Spawn Point. Position it

at (1, 1, –5). Add a plane to your scene and position it at (0, 0, –4) with a rotation
of (270, 0, 0).

4. Add a script to your project. Name the script PrefabGenerator and attach it to
the spawn point object. Listing 11.1 shows the complete code for the
PrefabGenerator script.

Listing 11.1 PrefabGenerator.cs
Click here to view code image

using UnityEngine;

public class PrefabGenerator : MonoBehaviour
{
 public GameObject prefab;

 void Update()
 {
 // Whenever we hit the B key we will generate a prefab at the
 // position of the original prefab
 // Whenever we hit the space key, we will generate a prefab at the
 // position of the spawn object that this script is attached to
 if (Input.GetKeyDown(KeyCode.B))
 {
 Instantiate(prefab);
 }

 if (Input.GetKeyDown(KeyCode.Space))
 {
 Instantiate(prefab, transform.position, transform.rotation);
 }
 }
}

5. With the spawn point selected, drag the Lamp prefab onto the Prefab property of
the Prefab Generator component. Now run the scene. Notice how pressing the B
key creates a lamp at its default prefab position and how pressing the spacebar
creates an object at the spawn point.

HOUR 12
2D Game Tools

What You’ll Learn in This Hour:
 How orthographic cameras work
 How to position sprites in 3D space
 How to move and collide sprites

Unity is a powerhouse at creating both 2D and 3D games. A pure 2D game is one in
which all the assets are simple flat images called sprites. In a 3D game, the assets are
3D models with 2D textures applied to them. Typically, in a 2D game, the player can
move in only two dimensions (for example, left, right, up, down). This hour is devoted
to helping you understand the basics of creating 2D games in Unity.

The Basics of 2D Games
The principles of design for a 2D game are the same as for a 3D game. You still need
to consider the concepts, rules, and requirements of the game. There are pros and cons
to making a game 2D. On one hand, a 2D game can be simple and much cheaper to
produce. On the other hand, the limitations of 2D can make some types of games
impossible. 2D games are built from images called sprites. These are a bit like
cardboard cutouts in a kids’ stage show. You can move them around, place them in
front of each other, and cause them to interact to create a rich environment.
When you create a new Unity project, you have the choice of 2D or 3D (see Figure
12.1). Selecting 2D defaults the Scene view to 2D mode and makes the camera
orthographic (as discussed later this hour). Another thing you will notice about a 2D
project is that there’s no directional light or skybox in the scene. In fact, 2D games are
generally unlit because sprites are drawn by a simple type of renderer called a “sprite
renderer.” Unlike a texture, lighting does not generally affect the way a sprite is drawn.

FIGURE 12.1
Setting a project to 2D.

TIP

2D Game Challenges
2D games bring unique design challenges. Examples include the following:

 The lack of depth makes immersion harder to achieve.
 A lot of game types don’t translate well to 2D.
 2D games are generally unlit, so the sprites have to be carefully drawn and
arranged.

The 2D Scene View
A project with 2D defaults will already be in the 2D Scene view. To change between
2D and 3D view, click the 2D button at the top of the Scene view (see Figure 12.2).
The 3D gizmo disappears when you enter 2D mode.
You can move around in 2D mode by right-clicking (or middle-clicking) and dragging
in the scene. You can use the mouse wheel to zoom, or you can use the scroll gesture
on a trackpad. You can use the background grid to orient yourself. You no longer have
the scene gizmo, but you don’t need it. Your scene orientation in 2D mode doesn’t
change.

FIGURE 12.2
The 2D Scene view.

 TRY IT YOURSELF

Creating and Placing a Sprite
You’ll look at importing and using sprites later. For now, you will just create a
simple sprite and add it to the scene:

1. Create a new project, this time selecting 2D (refer to Figure 12.1). The
project defaults are now set up for a 2D game. (Note that there is no
directional light in a 2D game.)

2. Add a new folder to the project and name it Sprites. Right-click in the
Project view and select Create > Sprites > Hexagon.

3. Drag the newly created Hexagon sprite into the Scene view. Notice the
Sprite Renderer component in the Inspector.

4. While the sprite asset is white, you can change its color by using the Sprite
Renderer component, so choose a different color for the sprite (see Figure
12.3).

FIGURE 12.3
The Hexagon sprite.

TIP

The Rect Tool
As explained in Hour 2, “Game Objects,” the Rect transform tool is ideal for
manipulating rect(angular) sprites. You can access this tool at the top left of the
Unity editor or by pressing the T key. Try playing with it while you have a sprite
onscreen.

Orthographic Cameras
Because you set up your project as a 2D project, the camera defaults to the
orthographic type. This means the camera doesn’t show perspective distortion; rather,
all objects appear the same size and shape, regardless of distance. This type of camera
is suitable for 2D games, where you control the apparent depth of sprites by their size
and sorting layer.
A sorting layer allows you to determine which sprites and groups of sprites draw in
front of each other. Imagine that you are setting up a stage. You would want the
background props behind the foreground props. If you sort the sprites from front to
back properly and choose appropriate sizes, you can give the impression of depth.
You can see the camera type for yourself by clicking Main Camera and noticing that

Projection is set to Orthographic in the Inspector (see Figure 12.4). (The rest of the
camera settings are covered in Hour 5, “Lights and Cameras.”)

TIP

The Size of an Orthographic Camera
Often you want to change the relative sizes of sprites in your scene all at once,
without resizing them. If the camera doesn’t take depth into account, you may be
wondering how you do this, as you can’t just move them closer to the camera.
In this case, you need to use the Size property in the Inspector (see Figure 12.4),
which appears only for orthographic projection cameras. This is the number of
world units from the center to the top of the camera’s view. That might seem odd,
but it has to do with measurements such as aspect ratio. In essence, though, bigger
numbers “zoom out,” while smaller numbers “zoom in.”

FIGURE 12.4
Setting the size of an orthographic camera.

Adding Sprites
Adding a sprite to a scene is a very easy process. Once a sprite image is imported into
a project (again, super simple), you simply need to drag it into your scene.

Importing Sprites
If you wish to use your own image as a sprite, you need to make sure Unity knows that
it is a sprite. Here’s how you import a sprite:

1. Locate the ranger.png file in the book assets (or use your own).

2. Drag the image into the Project view in Unity. If you created a 2D project, it
imports as a sprite. If you made a 3D project, you need to tell Unity to use it as
a sprite by setting Texture Type to Sprite (see Figure 12.5).

3. Simply drag the sprite into the Scene view. It’s that simple! Note that if your
Scene view is not in 2D mode, the sprite that is created won’t necessarily be at
a z axis position of 0 (like the rest of the sprites).

FIGURE 12.5
Making an image texture into a sprite.

Sprite Mode
Single sprites are fine, but the fun really starts when you start animating. Unity
provides some powerful tools for using sprite sheets. A sprite sheet is an image with
multiple frames of an animation laid out in a grid.
The Sprite Editor (which you will explore in a moment) helps you automatically
extract tens or hundreds of different animation frames from a single image.

 TRY IT YOURSELF

Exploring Sprite Modes
Follow these steps to explore the difference between the Single and Multiple
sprite modes:

1. Create a new 2D project or a new scene in your existing 2D project.

2. Import rangerTalking.png from the book asset files or source your own
sprite sheet.

3. Ensure that Sprite Mode is set to Single and expand the sprite tray in the
Project view to make sure Unity is treating this image as a single sprite (see
Figure 12.6).

FIGURE 12.6
Importing a sprite in Single mode.

4. Now change the Sprite Mode to Multiple and click Apply at the bottom of
the Inspector. Note that there is temporarily no tray to expand.

5. Click the Sprite Editor button in the Inspector; a window pops up. Click
the Slice drop-down, set Type to Automatic, and click Slice (see Figure
12.7). Notice how the outlines are automatically detected but are different
for each frame.

6. Set Type to Grid by Cell Size and adjust the grid to fit your sprite. For the
supplied image, the grid values are x = 62 and y = 105. Leave the other
settings as they are and click Slice. Notice that the borders are now more
even.

7. Click Apply to save the changes and close the Sprite Editor.

8. Look at your sprite in the Project view and note that the tray now contains
all the individual frames, ready for animation.

FIGURE 12.7
The Sprite Editor window.

NOTE

Sprite Sheet Animation
The Try It Yourself “Exploring Sprite Modes” shows how to import and configure
a sprite sheet. As mentioned earlier, sprite sheets are often used for 2D animations.
You will learn about sprite-based animations in Hour 17, “Animations.”

Imported Sprite Sizes
If you need to scale sprite images so that their sizes match, you have a couple options.
The best way to fix sprite sizing issues is to open the sprites in image editing software
such as Photoshop and make the corrections. You may not always have that capability
(or time), though. Another option is to use the scale tool in the scene. Doing that,
however, adds inefficiencies and potentially “odd” scaling behavior in the future.
If you need to consistently scale a sprite—for example, SpriteA always needs to be
half as big, consider instead using the Pixels per Unit import setting. This setting
determines how many world units a sprite of a given resolution occupies. For example,
a 640 × 480 image imported with a Pixels per Unit setting of 100 would occupy 6.4 ×
4.8 world units.

Draw Order
To determine what sprites draw in front of each other, Unity has a sorting layer
system. It is controlled by two settings on the Sprite Renderer component: Sorting
Layer and Order in Layer (see Figure 12.8).

FIGURE 12.8
The default sprite layer properties.

Sorting Layers
You can use sorting layers to group major categories of sprites by depth. When you
first create a new project, there is only one sorting layer, called Default (refer to Figure
12.8). Imagine that you have a simple 2D platform game with a background consisting
of hills, trees, and clouds. In this case, you would want to create a sorting layer called
Background.

 TRY IT YOURSELF

Creating Sorting Layers

Follow these steps to create and assign a new sorting layer to a sprite:

1. Create a new project and import the entire 2D asset pack (by selecting
Assets > Import Package > 2D).

2. Locate the sprite BackgroundGreyGridSprite in the folder Standard
Assets\2D\Sprites and drag it into the scene. Set its position to (–2.5, –2.5, 0)
and scale it to (2, 2, 1).

3. Add a new sorting layer by clicking the Sorting Layer drop-down of the
Sprite Renderer component and then clicking Add Sorting Layer (see
Figure 12.9).

FIGURE 12.9
Adding new sorting layers.

4. Add two new layers called Background and Player. Do this by clicking the
+ button under Sorting Layers (see Figure 12.10). Note that the lowest layer
in the list, currently Player, will be drawn last and will thus appear in front of
all others in the game. It is a good idea to move the default layer to the
bottom so that new items are drawn on top of other layers.

FIGURE 12.10
Managing sorting layers.

5. Re-select the BackgroundGreyGridSprite game object and set its sorting
layer to the newly created Background.

6. In the Project view, search for the sprite RobotBoyCrouch00 and drag it into
the scene. Position it at (0, 0, 0).

7. Set Sorting Layer for this sprite to Player (see Figure 12.11). Note that the
player is drawn on top of the background. Now try going back into the Tags
& Layers Manager (by selecting Edit > Project Settings > Tags and
Layers) and rearranging the layers so that the background is drawn on top of
the player.

FIGURE 12.11
Setting a sprite’s sorting layer.

You would likely want another layer for power-ups, bullets that may spawn, and so on.
The ground or platform may be on another layer. Finally, if you want to add more
sense of depth with subtle foreground sprites, they could go in a Foreground layer.

Order in Layer
Once you have your major layers defined and assigned to your sprites, you can fine-
tune the draw order with the Order in Layer setting. This is a simple priority system,
with higher numbers drawing on top of lower numbers.

WARNING

Sprites Going Missing
When you are starting out, it is quite common for sprites to go missing altogether.
This is usually either because a sprite is behind a larger element or behind the
camera.
You may also find that if you forget to set the Sorting Layer and Order in Layer
properties, the z depth can affect the draw order. This is why it is important to
always set the layer for every sprite.

2D Physics
Now that you understand how static sprites work in your game, it’s time to add some
spice by making them move. Unity has some fantastic tools to help with this. There are
two main ways of animating sprites in Unity, as detailed in the following sections.
Let’s dive in and explore them. Unity has a powerful 2D physics system that integrates
a system called Box2D. Just as in 3D games, you can use rigidbodies with gravity,
various colliders, and physics specific to 2D platform and driving games.

Rigidbody 2D
Unity has a different type of rigidbody for 2D purposes. This physics component
shares many of the same properties with its 3D counterpart, which you have already
met. It is a common mistake to choose the wrong type of rigidbody or collider for a
game, so be careful to ensure that you are using items from Add Component >
Physics 2D.

TIP

Mixing Physics Types
2D and 3D physics can exist in the same scene together, but they will not interact
with each other. Also, you can put 2D physics on 3D objects and vice versa!

2D Colliders
Just like 3D colliders, 2D colliders allow game objects to interact with one another
when they touch. Unity comes with a range of 2D colliders (see Table 12.1).

TABLE 12.1 2D Colliders

Collider Description

Circle Collider
2D

A circle with a fixed radius and an offset.

Box Collider 2D A rectangle with an adjustable width, height, and offset.

Edge Collider
2D

A segmented line that does not need to be closed.

Capsule Collider
2D

A capsule shape with offset, size, and direction.

Composite
Collider 2D

A special collider that is a composite of several primitive colliders,
turning several into one.

Polygon
Collider 2D

A closed polygon with three or more sides.

 TRY IT YOURSELF

Making Two Sprites Collide
Follow these steps to see the effects of 2D colliders by playing with some 2D
squares:

1. Create a new 2D scene and ensure that the 2D package is imported.

2. Find the sprite RobotBoyCrouch00 in the folder Assets\Standard
Assets\2D\Sprites and drag it into your Hierarchy view. Ensure that the
sprite is at (0, 0, 0).

3. Add a polygon collider (by selecting Add Component > Physics 2D >
Polygon Collider 2D). Note that this collider roughly fits the outline of the
sprite.

4. Duplicate this sprite and move the duplicate down and to the right to (.3, –1,
0). This gives the top sprite something to fall onto.

5. So that the top sprite responds to gravity, select it and add a rigidbody 2D
(by selecting Add Component > Physics 2D > Rigidbody 2D). See Figure
12.12 for the final setup.

6. Play the scene and notice the behavior. See? Just like 3D physics.

FIGURE 12.12
The finished setup with the top robot selected.

TIP

2D Colliders and Depth
One thing you may find a little odd about 2D colliders, if you look at them in a 3D
Scene view, is that they don’t need to be at the same z depth in order to collide.
They work only on the x and y positions of the collider.

Summary
In this hour, you have learned about the basics of 2D games in Unity. You started by
increasing your understanding of orthographic cameras and how depth works in 2D.
You went on to make a simple 2D object move and collide, which is the basis of many
2D games.

Q&A
Q. Is Unity a good choice for creating 2D games?
A. Yes. Unity has a fantastic set of tools for creating 2D games.

Q. Can Unity deploy 2D games to mobile and other platforms?
A. Absolutely. One of Unity’s core strengths is its capability to deploy to many

platforms with relative ease. 2D games are no exception to this, and many very
successful 2D games have been made with Unity.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. What camera projection renders all objects without perspective distortion?
2. What does the size setting of an orthographic camera relate to?
3. Do two 2D sprites need to be at the same z depth in order to collide?
4. Will sprites render if they are behind the camera?

Answers
1. Orthographic
2. The size setting specifies half of the vertical height that the camera covers,

specified in world units.
3. No. 2D collisions take account of only x and y positions.
4. No. This is a common cause of lost sprites when making 2D games.

Exercise
In this exercise, you are going to use some Unity standard assets so that you can see
what can be achieved when you combine sprites with a little animation, some character
control script, and some colliders.

1. Create a new 2D project or a new scene in an existing project.
2. Import the 2D asset pack (by selecting Assets > Import Package > 2D). Leave

everything selected.
3. Find CharacterRobotBoy in Assets\Standard Assets\2D\Prefabs and drag it into

the Hierarchy view. Set the position to (3, 1.8, 0). Note that this prefab comes
with many components in the Inspector.

4. Find PlatformWhiteSprite in Assets\Standard Assets\2D\Sprites and drag it into
the Hierarchy view. Set the position to (0, 0, 0) and scale to (3, 1, 1). Add a Box
Collider 2D so that your player doesn’t fall through the floor!

5. Duplicate this platform game object. Position the duplicate at (7.5, 0, 0), rotate it
to (0, 0, 30) to make a ramp, and scale it to (3, 1, 1).

6. Move the Main Camera to (11, 4, –10) and adjust its size to 7. See Figure 12.13
for the final setup.

7. Click Play. Use the arrow keys to move and the spacebar to jump.

FIGURE 12.13
The final exercise setup.

HOUR 13
2D Tilemap

What You’ll Learn in This Hour:
 What tilemaps are
 How to create palettes
 How to create and place tiles
 How to add physics to tilemaps

You learned to created 3D worlds using Unity’s terrain system in Hour 4, “Terrain and
Environments.” Now it is time to extend that knowledge into 2D games, using Unity’s
new 2D Tilemap system. Using this system, you can create worlds quickly and easily
for more interesting and compelling game experiences. In this hour you’ll start by
learning about tilemaps. From there you’ll examine palettes, which you use to hold
your tiles. Finally, you’ll create tiles and paint them onto your tilemaps before adding
collision to make your tilemaps interactable.

The Basics of Tilemaps
As the name implies, a tilemap is simply a “map” of tiles (in the same way old-school
bitmaps are maps of bits). Tilemaps sit on a grid object that defines the tile sizes and
spacing common to all tilemaps. Tiles are individual sprite elements used to draw a
world. These tiles are placed on a palette, which is then used to draw the tiles onto the
tilemap. It may seem like a lot, but it is basically a “paint, palette, brush, canvas” type
of setup, and once you begin using it, it will seem very natural.
If it isn’t already painfully obvious, it should be noted that tilemaps are meant to be
used for 2D games. While they could technically be used for 3D, using them that way
would not be very effective. It is also a good idea to use sprite sheets in conjunction
with tilemaps. You can create a sheet of the various environment parts and then easily
convert them into tiles.

Creating a Tilemap

You can have as many tilemaps in a scene as you like, and you will often find yourself
creating several of them and layering them together. This method enables you to set up
background, midground, and foreground tilemaps for things like parallax effects. To
create a tilemap in a scene, you can select GameObject > 2D Object > Tilemap.
Unity adds two game objects, named Grid and Tilemap, to your scene (see Figure
13.1).

FIGURE 13.1
Adding a tilemap.

The Tilemap game object has two components worth noting: Tilemap and Tilemap
Renderer. The Tilemap component has to do with tile placement, anchor positions, and
overall color tinting. The Tilemap Renderer allows you to specify sorting orders so
that you can ensure that your tilemaps draw in the correct order.

 TRY IT YOURSELF

Adding a Tilemap to a Scene
In this exercise, you will add a tilemap to a scene. Be sure to save this scene
because you will be using it more later in this hour. Follow these steps:

1. Create a new 2D project. Create a new folder named Scenes and save your
scene into it.

2. Add a tilemap to your scene by selecting GameObject > 2D Object >
Tilemap.

3. Eventually, this tilemap will be the background of your scene, so rename the
new Tilemap game object Background.

4. To create another tilemap without also creating another grid, right-click the
Grid game object in the Hierarchy window and select 2D Object > Tilemap
(see Figure 13.2). Name the new tilemap Platforms.

FIGURE 13.2
Adding a new tilemap from the Hierarchy view.

5. Add two new sorting layers to your project and name them Background
and Foreground. (Review Hour 12, “2D Game Tools,” if you do not
remember how to add sorting layers to a project.)

6. Select the Background tilemap and set the Sorting Layer property of the
Tilemap Renderer component to Background. Select the Platforms tilemap
and set the Sorting Layer property of the Tilemap Renderer component to
Foreground.

The Grid
As you saw earlier, when you add a tilemap to a scene, you also get a Grid game
object (see Figure 13.3). The grid manages settings that are common across all similar
tilemaps. Specifically, the grid manages the cell size and cell gap for your tilemaps.
Therefore, if all your tilemaps need to be the same size, you need only a single grid for
all of them to sit under. Otherwise, you can have multiple grids for multiple tilemap
sizes. Notice that the default cell size is 1. This information will become important
later, so be sure to remember that.

FIGURE 13.3
The Grid object.

TIP

Angled Tilemaps
Usually, tilemaps are aligned with each other. However, that doesn’t have to be the
case. If you want one of your background tilemaps to be at an angle, you can
simply rotate it in the Scene view. You can even move tilemaps to offset their
positions for staggered tiles or push them back on the z axis for a built-in parallax
effect.

Palettes
In order to paint tiles onto tilemaps, you need to first assemble them on a palette. You
can think of the palette as a painter’s palette, where all your painting choices take
place. The palette comes with many tools that help you sculpt worlds exactly as you
see fit. You access the tile palette by going to Window > Tile Palette. The Tile Palette
window, shown in Figure 13.4, appears.

FIGURE 13.4
The Tile Palette window.

Tile Palette Window
The Tile Palette window has several tools for painting and a main middle area where
all your tiles are laid out. By default, a project doesn’t have any palettes to work with,
but a new one can be created by clicking the Create New Palette drop-down.

 TRY IT YOURSELF

Creating Palettes
Now it is time to add a couple palettes to your project. You will be using the
project created in the Try It Yourself “Adding a Tilemap to a Scene,” so if you
haven’t done that one yet, go ahead and complete it now. Be sure to save the
scene because you will be using it more later in this hour. When you’re ready to
create a palette, follow these steps:

1. Open the scene you created in the Try It Yourself “Adding a Tilemap to a

Scene.” Open the Tile Palette window (by selecting Window > Tile Palette)
and dock it next to the Inspector view (refer to Figure 13.4).

2. Add a palette by clicking Create New Palette and name the palette Jungle
Tiles. Leave the rest of the palette settings at their defaults (see Figure 13.5).
Click Create.

FIGURE 13.5
Creating a new palette.

3. In the Create Palette into Folder dialog that appears, create a new folder,
name it Palettes, and click Select Folder.

4. Repeat steps 2 and 3 to create another palette named Grass Tiles. When you
are done, you should have two palettes in the palette drop-down and two
tilemaps in the Active Tilemap drop-down (see Figure 13.6).

FIGURE 13.6
The correct palettes and tilemaps.

Tiles
So far in this hour, you have been doing a lot of prep work that will allow you to use
tiles. Now it is time to dig in and make the tiles to paint with. In essence, tiles are
sprites that are specially configured to be used with tilemaps. Sprites that are being
used as tiles can still be used as regular sprites if you happen to need them for both.
Once sprites are imported and configured, they can be turned into tiles, added to a
palette, and then painted onto tilemaps.

NOTE

Crazy Custom Tiles
In this hour you are going to be working with and painting basic tiles. While there
is a ton of functionality in these built-in tile options, there are a lot of further
customizations that can be done with the new 2D Tilemap feature. If you want to
take your expertise even further—creating things like animated tiles, smart tiles, or
even custom brushes with game object logic built into the tiles—you should check
out Unity’s 2D Extras package. At the time this book was published, this package
was located at https://github.com/Unity-Technologies/2d-extras. Eventually,
though, this package will be migrated into the Unity engine’s package manager and
will be available like all the other assets you’ve been using in this book. So much to
do, so much to see!

Configuring Sprites
There isn’t much you need to do to prepare sprites for use as tiles. There are two major
steps:

1. Ensure that the Pixels per Unit property of your sprites is configured to be
exactly the same size as the Cell Size property of your grid. (You’ll learn more
about this shortly.)

2. Slice up the sprites (assuming that they are in a sprite sheet) so that there is as
little extra space around them as possible. Where possible, having no extra
space around a tile is preferred.

The first step in preparing a sprite for use as a tile may seem complex, but it is really
rather straightforward. For example, in this hour you will be using sprite sheets that
have multiple tiles in them. These tiles are 64 pixels by 64 pixels (because that’s how
the artist made them). Since your grid’s Cell Size property is 1 unit by 1 unit, you will
want to set the Pixels per Unit property to 64. That way, every 64 pixels in your sprite
will equal 1 unit, which is the cell size.

Creating Tiles
Once your sprites are prepared correctly, it is time to make some tiles. Doing so simply
requires dragging the sprites onto the correct palette in the Tile Palette window and
choosing where you’d like to save the resulting tiles. The original sprites remain where
they are, unchanged. New tile assets are created that reference the original sprites.

 TRY IT YOURSELF

Configuring Sprites and Creating Tiles
This exercise shows you how to configure your sprites and use them to make

https://github.com/Unity-Technologies/2d-extras

tiles. You will be using the project created earlier in this hour, so if you haven’t
done the Try It Yourself “Creating Palettes,” go ahead and get caught up. If
you’ve forgotten how to complete any of these steps, you can go back and
review Hour 12. Be sure to save this scene because you will be using it more
later in this hour. Follow these steps:

1. Open the scene you created in the Try It Yourself “Creating Palettes.”
Create a new folder and name it Sprites. Locate the two sprites
GrassPlatform_TileSet and Jungle_Tileset in the book files for this hour.
Drag them into the newly created Sprites folder.

2. Select the GrassPlatform_Tileset sprite in the Project view and look at its
properties in the Inspector view. Set Sprite Mode to Multiple and set Pixels
per Unit to 64. Click Apply.

3. Open the Sprite Editor and click Slice in the upper-left corner. Set Type to
Grid By Cell Size and set the X and Y Pixel Size properties to 64 (see
Figure 13.7).

4. Click Slice and then click Apply. Then close the Sprite Editor window.

FIGURE 13.7
Slicing the sprite sheet.

5. Repeat steps 2 through 4 for the Jungle_Tileset sprite. This sprite is a bit
larger than the grass tiles, though, so set Pixels per Unit and the X and Y
Pixel Size properties to 128.

6. Ensure that the Tile Palette window is open and docked next to the Inspector
view. Also ensure that the Grass Tiles palette is currently active. Drag the
GrassPlatform_Tileset sprite into the center area of the Tile Palette window
(see Figure 13.8).

FIGURE 13.8
Turning sprites into tiles.

7. In the Generate Tiles into Folder dialog that appears, create a new folder,
name it Tiles, and then click Select Folder.

8. In the Tile Palette window, change the active palette to Jungle Tiles and
then repeat steps 6 and 7 for Jungle_Tileset.

Now that you have your sprites configured and your tiles created, it is time to start
painting!

Painting Tiles
To paint tiles onto a tilemap, you need to pay attention to three things: the selected tile,
the active tilemap, and the selected tool (see Figure 13.9). When selecting which tile to
paint, you can click a single tile, or you can drag to grab a selection of tiles. This is
useful if you want to paint a section of tiles that go together (like a complex roof
piece).

FIGURE 13.9
Preparing to paint.

When you’re ready, click in the Scene view to begin painting on the tilemap. Table
13.1 lists the tools that appear in the Tile Palette window (from left to right).

TABLE 13.1 Tile Palette Window tools

Collider Description

Select
tool

Used to select a tile or group of tiles on a tilemap.

Move
tool

Used to move a selection on a tilemap from one location to another.

Paint tool Used to paint the currently highlighted tile (on the palette) onto the active
tilemap. Clicking and dragging paints multiple tiles at once. Holding Shift
while painting toggles this tool with the Erase tool. Holding Ctrl
(Command on Mac) while painting toggles this tool with the Picker tool.

Rectangle
tool

Used to paint a rectangular shape on the tilemap and fills it with the
currently highlighted tile.

Picker
tool

Used to select a tile from a tilemap to paint with (instead of highlighting
it on the palette). This tool speeds up painting repeating complex tile
groups.

Erase
tool

Used to erase a tile or group of tiles from the active tilemap.

Fill tool Used to fill an area with the currently highlighted tile.

 TRY IT YOURSELF

Painting Tiles
It is time to start painting tiles. You will be using the project created earlier in
this hour, so if you haven’t done that yet, go ahead and get caught up with all the
Try It Yourself exercises. Be sure to save this scene because you will be using it
more later in this hour. Follow these steps:

1. Open the scene created in the Try It Yourself “Configuring Sprites and
Creating Tiles.”

2. With the Tile Palette window open, select the Jungle Tiles palette and
ensure that the Active Tilemap is set to Background.

3. Begin selecting tiles and painting them in the Scene view (see Figure
13.10). Continue to select tiles and paint until you’ve created a jungle
background that you like.

FIGURE 13.10
Painting the background.

4. Switch to the Grass Tiles palette and change Active Tilemap to Platforms.

5. Paint some grass platforms for your level. You will be using these platforms
with a character controller soon, so be sure to make something a player can
jump around on (see Figure 13.11).

FIGURE 13.11
The finished level.

TIP

Enhanced Controls
Several hotkeys can assist you in finding and painting the correct tiles. First, the
Tile Palette window uses the same controls for navigation as the 2D Scene view.
This means you can use the scroll wheel to zoom as well as right-clicking and
dragging to pan around. When painting tiles, you can rotate and flip them to
generate new and interesting designs. Simply use the , (comma) and . (period) keys
to rotate the tile before painting. Likewise, use Shift+, to flip the tiles horizontally
and Shift+. to flip the tiles vertically.

Customizing the Palettes
You might have noticed that the palettes aren’t exactly laid out in the most convenient
manner. When you created the tiles by dragging sprites onto the palette, Unity placed
them in a straightforward, but not necessarily intuitive, manner. Luckily, you can
customize the palette to suit your needs. Simply click the Edit button in the Tile
Palette window (see Figure 13.12) and use the palette tools to paint, move, or modify
the tiles as you see fit. You can even create several copies of the same tile and rotate or
flip them for convenient painting.

FIGURE 13.12
Editing the tile palette.

Tilemaps and Physics
You’ve now learned to paint on tilemaps to create brand-new 2D level designs. If you
actually try to play with these levels, however, you’ll find that your characters fall
right through the floor. It’s time to learn about using colliders with these new tilemaps.

Tilemap Colliders
You could add collision to your levels by placing box colliders around your tiles
manually, but who wants to work that hard? I don’t! Instead, you can use a Tilemap
Collider 2D component to automatically handle collision. Besides working specifically
for tilemaps, these colliders function just like any other colliders you’ve used in the
previous hours. All you need to do is select the tilemap you want to have collision and
select Component > Tilemap > Tilemap Collider 2D to add the collider as a
component.

 TRY IT YOURSELF

Adding a Tilemap Collider 2D Component

In this exercise you are going to finish the scene you’ve been working with all
throughout this hour by adding colliders to your platforms. You will be using
the project created earlier in this hour, so if you haven’t done that yet, go ahead
and get caught up. Then follow these steps:

1. Open the scene you created in the Try It Yourself “Painting Tiles.” Import
the 2D standard assets (by selecting Assets > Import Package > 2D).

2. Locate the CharacterRobotBoy prefab (in the folder Assets\Standard
Assets\2D\Prefabs) and drag it into your scene, above one of your platforms.
You may need to change the scale of the prefab to (1, 1, 1).

3. Play your scene and notice that the robot falls right through the ground. Exit
play mode.

4. Select the Platforms tilemap game object and then add a Tilemap Collider
2D component (by selecting Add Component > Tilemap > Tilemap
Collider 2D). Notice that a collider is placed around each individual tile (see
Figure 13.13).

FIGURE 13.13
The Tilemap Collider 2D component.

5. Enter play mode again and notice that the robot lands on the platform now.
If you zoom in, however, you will notice that because the collider fits around
the tile, there are gaps between the grass platform and the collider (refer to
Figure 13.13).

6. On the Tilemap Collider 2D component, set Y Offset to −0.1 to lower the
collider a little. Enter play mode again and notice that the robot now stands
on the grass.

The colliders you now have on your tiles make the level complete and playable. One
problem worth noting, however, is that placing a collider around each tile is very
inefficient and can lead to performance issues. You can resolve this by using
something called a Composite Collider 2D component.

TIP

Collision Accuracy
When you begin using colliders with tilemaps, you might need to make some
changes to the rigidbody components of your moving objects. Because the edges of
a Tilemap Collider 2D component and even a Composite Collider 2D component
are very thin, you may notice that objects that have small colliders or that move
quickly can tend to get stuck on them or even fall through them. If you notice this
behavior, you should set the Collision Detection property of the problematic
rigidbody to Continuous. That should prevent any more of the collider issues with
your tilemaps.

Using a Composite Collider 2D Component
A composite collider is a collider that is composed of many other colliders. In a way, it
allows you to merge all the individual tile colliders into a single larger collider. The
really cool thing about doing this is that whenever you add or change tiles, the collider
is automatically updated for you. You can add a Composite Collider 2D component by
selecting Add Component > Physics 2D > Composite Collider 2D. When you do, a
Rigidbody 2D component is also added; it is required for the Composite Collider 2D
component to work (see Figure 13.14). Obviously, if you don’t want all your tiles to
fall due to gravity, you will want to change the Body Type property of the Rigidbody
2D component to Static.
After you add the composite collider, nothing really changes with the tilemap. Each
tile still has its own individual collider. The reason is that you need to tell the collider
that it should be used in the composite. To do that, simply check the Used By
Composite check box. After you do this, all the colliders are merged into one large
(and more efficient) collider.

FIGURE 13.14
The Composite Collider 2D component.

Summary
In this hour, you have learned about creating 2D worlds using Unity’s 2D Tilemap
system. You began by learning about tilemaps in general. After that you created
palettes and configured sprites to be added as tiles. Once your tiles were prepared, you
painted a couple tilemaps to build a level. Finally, you learned how to add collision to
your tilemaps to make them playable.

Q&A
Q. Can tilemaps be combined with regular sprites when building 2D worlds?
A. Yes, absolutely. A tile is really just a special kind of sprite.

Q. Are there any kinds of levels that tilemaps aren’t good for?
A. Tilemaps are great for repetitive and modular levels. Scenes that involve a large

number of different shapes or very unique and nonrepeating sprites would be
difficult to create with tilemaps.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. What component defines properties (such as Cell Size) that tilemaps share?
2. Where are tiles placed prior to painting them onto a tilemap?
3. What collider type allows the combination of multiple colliders into one?

Answers
1. The Grid component
2. A palette
3. A Composite Collider 2D component

Exercise
In this exercise, you are going to experiment with the tilemaps you’ve created to
enhance their appearance and usability. Here are some things to try:

 Try fully painting and modifying both of your tilemaps until you are satisfied
with them.
 Try adding a Foreground tilemap to add more plant or rock elements to your
scene.
 Try testing your full level by adding a 2D character and getting the camera to
follow the character. The book files include a script called CameraFollow.cs to
help get the camera to follow your player around.
 Try pushing your background tilemap away from the camera on the z axis. In
this way, you can create a natural parallax effect. Remember that you will be
able to see the effect only if you have a perspective camera.
 Try modifying the color property of the background’s Tilemap component to
make the background images look faded and distant.

HOUR 14
User Interfaces

What You’ll Learn in This Hour:
 The elements of a user interface (UI)
 An overview of the UI elements
 The different UI render modes
 How to build a simple menu system

A user interface (UI) is a special set of components responsible for sending
information to, and reading information from, the user. In this hour, you’ll learn all
about using Unity’s built-in UI system. You’ll start by examining the UI basics. From
there, you’ll get to try out the various UI elements, such as text, images, buttons, and
more. You’ll finish this lesson by creating a simple but complete menu system for your
games.

Basic UI Principles
A user interface (commonly referred to as a UI) is a special layer that exists to give
information to the user and to accept simple inputs from the user. This information and
input could take the form of an HUD (heads up display) drawn over the top of your
game or some object actually located within your 3D worlds.
In Unity, the UI is based on a canvas onto which all the UI elements are painted. This
canvas needs to be the parent of all UI objects in order for them to work, and it is the
main object driving your entire UI.

TIP

UI Design
As a general rule, you should sketch your UI ahead of time. A fair bit of thought
needs to go into what to display on the screen, where it will be displayed, and how.
Too much information will cause the screen to feel cluttered. Too little information

will leave the players confused or unsure. Always look for ways to condense
information and make information more meaningful. Your players will thank you.

TIP

New UI
Unity got a new UI in version 4.6. In older versions, you had to use many lines of
confusing code to create UIs, but now it's much easier. The old UI system is still
there. If you are familiar with that legacy system, you may be tempted to use it.
Please don’t. The legacy system is only still there for debugging, backward
compatibility with old projects, and editor extensions. It is not nearly as efficient or
powerful as the new system!

The Canvas
A canvas is the basic building block for a UI, and all the UI elements are contained
within the canvas. All the UI elements you add to a scene will be child objects of the
canvas in the Hierarchy view and must stay as children; otherwise, they’ll disappear
from the scene.
Adding a canvas to a scene is very easy. You can add one simply by selecting
GameObject > UI > Canvas. Once the canvas is added to a scene, you are ready to
begin building the rest of the UI.

 TRY IT YOURSELF

Adding a Canvas
Follow these steps to add a canvas to a scene and explore its unique features:

1. Create a new project (either 2D or 3D).

2. Add a UI canvas to the scene (by selecting GameObject > UI > Canvas).

3. Zoom out so you can see the whole canvas (by double-clicking it in
Hierarchy view). Notice how big it is!

4. Note in the Inspector the odd transform component the canvas has. This is a
Rect transform, and we will discuss it shortly.

NOTE

EventSystem
You may have noticed that when you added a canvas to your scene, you also got an
EventSystem game object. This object is always added when you add a canvas. The
event system is what allows users to interact with the UI by pressing buttons or

dragging elements. Without the event system, a UI would never know if it was
being used—so don’t delete it!

CAUTION

Performance Woes
Canvases are very efficient because they turn the UI elements nested on them into a
single static object behind the scenes. This allows them to be processed very
quickly. The downside is that when one part of a UI changes, the whole thing needs
to be rebuilt. This can be a very slow and inefficient process and can cause a
noticeable stutter in a game. Therefore, it is a good idea to use canvas components
to separate objects that move a lot onto their own canvas. That way, their
movement will force a smaller set of your UI to rebuild and ultimately be much
faster.

The Rect Transform
You will notice that a canvas (and every other UI element) has a Rect transform rather
than the normal 3D transform you are familiar with. Rect, short for rectangle,
transforms give you fantastic control over the positioning and rescaling of UI elements
while remaining very flexible. This allows you to create a user interface and ensure
that it works well on a wide range of devices.
For the canvas you created earlier in this hour, the Rect transform is entirely grayed
out (see Figure 14.1). This is because, in its current form, the canvas derives its values
entirely from the Game view (and, by extension, the resolution and aspect ratio of any
devices your game runs on). This mean the canvas will always take up the entire
screen. A good workflow is to make sure the first thing you do whenever building a UI
is to select a target aspect ratio to work with. You can do this from the Aspect Ratio
drop-down in the Game view (see Figure 14.2).

FIGURE 14.1

The Rect transform of a canvas.

FIGURE 14.2
Setting the game’s aspect ratio.

Rect transforms work a little differently from traditional transforms. With normal 2D
and 3D objects, the transform is concerned with determining how far (and with what
alignment) an object is from the world origin. The UI, however, is unconcerned with
world origin and instead needs to know how it’s aligned in relation to its anchor point.
(You will learn more about Rect transforms and anchors later, when you have a UI
element that can actually use it.)

Anchors
A key concept in making UI elements work is anchors. Every UI element comes with
an anchor and uses that anchor to find its place in the world in relation to the Rect
transform of its parent. Anchors determine how elements are resized and repositioned
when the Game window changes size and shape. In addition, an anchor has two
“modes”: together and split. When an anchor is together as a single point, the object
knows where it is by determining the distance (in pixels) of its pivot from the anchor.
When an anchor is split, however, the UI element bases its bounding box on how far
(again in pixels) each of its corners is from each corner of the split anchor. Confusing?
Let’s try it out!

 TRY IT YOURSELF

Using a Rect Transform
Rect transforms and anchors can be confusing, so follow these steps to better
understand them:

1. Create a new scene or project.

2. Add a UI image (by selecting GameObject > UI > Image). Note that if you
add an image to a scene without a canvas, Unity automatically puts a canvas
in your scene and then puts the image on it.

3. Zoom out so you can see the whole image and canvas. Note that it is much

easier working with the UI when your scene is in 2D mode (which you enter
by clicking the 2D button at the top of Scene view) and you are using the
Rect tool (hotkey: T).

4. Try dragging the image around the canvas. Also try dragging the anchor
around the canvas. Notice that the lines show you how far the image’s pivot
is from the anchor. Also notice the properties of the Rect transform in the
Inspector and how they change (see Figure 14.3).

FIGURE 14.3
The anchor at a single point.

5. Now try splitting your anchor. You can do this by dragging any of the
corners of the anchor away from the rest. With the anchor split, move your
image around again. Notice how the properties of the Rect transform change
(see Figure 14.4). (Hint: Where did Pos X, Pos Y, Width, and Height go?)

FIGURE 14.4

The anchor after being split.

So what exactly does splitting an anchor (or keeping it together) do? In simple terms,
an anchor that is a single point fixes your UI element in place relative to that spot. So
if the canvas changes size, the element doesn’t. Splitting the anchor causes the element
to fix its corners relative to the corners of the anchor. If the canvas resizes, so does the
element. You can easily preview this behavior in the Unity editor. Using the preceding
example, if you select the image and then click and drag the border of the canvas (or
any other parent, if you have more elements), the word Preview appears, and you can
see what will happen when using different resolutions (see Figure 14.5). Try it out
with both a single anchor and a split anchor and notice how differently they behave.

FIGURE 14.5
Previewing a canvas change.

TIP

Getting Anchors Right
Anchors may seem a little odd at first, but understanding them is the key to
understanding the UI. Get the anchors, and everything else just falls into place.
When working with UI elements, it is great to get into the habit of always placing
the anchor and then placing the object because objects snap to their anchors but not
vice versa.
When you get into that habit (place anchor, place object, place anchor, place object,
and so on), everything becomes a lot easier. Invest some time in playing with
anchors until you understand them.

TIP

The Anchor Button
You don’t always have to manually drag anchors around your scene in order to

place them. You can also type their values into the Anchors property in the
Inspector (a value of 1 is 100%, .5 is 50%, and so on). If even that is too much
work for you, you can use the convenient anchor button that enables you to place
the anchor (and additionally the pivot and position) in one of 24 preset locations
(see Figure 14.6). Sometimes it pays to be lazy!

FIGURE 14.6
The anchor button.

Additional Canvas Components
So far, we’ve talked about the canvas a bit but still haven’t even mentioned the actual
Canvas component. Truth be told, there isn’t much with the component itself that you
need to concern yourself with. You do need to know about render modes, and we look
at them in detail later in this hour.
Depending on what version of Unity you are using, you may have a couple extra
components. Again, these are very simple to use, so they aren’t covered in detail here
(there’s just too much other good stuff to get to). The Canvas Scaler component allows
you to specify how, if at all, you would like your UI elements resized as the screen of
your target device changes (for instance, seeing the same UI on a web page versus a
high-DPI Retina iPad device). The Graphical Raycaster component, which works with
the EventSystem object, allows your UI to receive button clicks and screen touches. It
allows you to use raycasting without needing to drag in the entire physics engine to do
it.

UI Elements
At this point, you’re probably pretty tired of the canvas, so let’s get working with some
UI elements (also called UI controls). Unity has several built-in controls available for
you to get started with. Don’t worry if you don’t see a control that you want, though.
Unity’s UI library is open source, and plenty of custom controls are being created by
members of the community all the time. As a matter of fact, if you’re up for the
challenge, you can even create your own controls and share them with everyone else.
Unity has many controls that you can add to scenes. Most of them are simple
combinations and variations of two basic elements: images and text. This makes sense
if you think about it: A panel is just a full-sized image, a button is just an image with
some text, and a slider is really three images stacked together. As a matter of fact, the
whole UI is built to be a system of basic building blocks that are stackable to get the
functionality you want.

Images
Images are the fundamental building pieces of a UI. They can range from background
images, to buttons, to logos, to health bars, to everything in between. If you completed
the Try It Yourself exercises earlier in this hour, then you already have some
familiarity with images, but now you’ll take a closer look. As you saw earlier, you can
add an image to a canvas by selecting GameObject > UI > Image. Table 14.1 lists the
properties of an image, which is just a game object with an Image component.

TABLE 14.1 Properties of the Image Component

Property Description

Source
Image

Specifies the image to be displayed. This must be a sprite. (For more on
sprites, refer to Hour 12, “2D Game Tools.”)

Color Indicates any color tinting and opacity changes to be applied to the
image.

Material Specifies a material (if any) to be applied to the image.

Raycast
Target

Determines whether the image is clickable.

Image
Type

Specifies the type of sprite to be used for the image. This property affects
how the image scales and tiles.

Preserve
Aspect

Determines whether the image will maintain its original aspect ratio,
regardless of scaling.

Set
Native
Size

Sets the size of the image object to the size of the image file being used.

Besides the basic properties, there isn’t much more you need to know about using an
image. Work through the following Try It Yourself to see how easy it is to use images.

 TRY IT YOURSELF

Using an Image
Let’s try creating a background image. This exercise uses the
BackgroundSpace.png file from the book assets for Hour 14. Follow these steps:

1. Create a new scene or project.

2. Import BackgroundSpace.png into your project, ensuring that it is imported
as a sprite. (Refer to Hour 12 if you don’t remember how to do this.)

3. Add an image to your scene (by selecting GameObject > UI > Image).

4. Set the BackgroundSpace sprite as the Source Image property of the Image
object.

5. Resize the image to fill the entire canvas. Switch over to the Game view and
see what happens if you change the aspect ratio. Notice that the image may
get cut off or fail to fill the screen.

6. Split the anchor of the image so that the four corners of the anchor reach the
four corners of the canvas (see Figure 14.7). Now switch back to the Game
view and see what happens when you change the aspect ratio. Notice that the
image always fills the screen and is never cut off—although it may skew.

FIGURE 14.7
Expanding the image and anchors.

NOTE

UI Materials

As you can see In Figure 14.7, there is a Material property for the image
component in the Try It Yourself “Using an Image.” It’s worth noting that the
Material property is completely optional and not required for this UI. Furthermore,
in the current canvas render mode (explained in more detail later in this hour), the
Material property doesn’t do a whole lot. In other modes, however, the Material
property can allow you to apply lights and shader effects to UI elements.

Text
Text objects (which are really just text components) are elements you use to display
text to the user. If you’ve ever used text formatting controls before (think blogging
software, word processors like Word or WordPad, or anywhere else you would use and
style text), the Text component will be very familiar. You can add a Text component
to a canvas by selecting GameObject > UI > Text. Table 14.2 lists the properties of
the Text component. Because most text properties are self-explanatory, only the new
or unique properties are listed.

TABLE 14.2 Properties of the Text Component

Property Description

Text Specifies the text to display.

Rich Text Indicates whether to support rich text tags within text.

Horizontal
Overflow
and
Vertical
Overflow

Specify how to handle a situation in which the text does not fit within the
bounding box of the UI element that contains it. The value Wrap means
text will wrap down to the next line. Truncate means that the text that
doesn’t fit will be removed. Overflow means that the text can spill out of
the box. If text does not fit within the box and Overflow is not set, the
text may disappear.

Best Fit As an alternative to Overflow (which will not work if Overflow is used),
resizes text to fit within the bounding box of the object. With Best Fit,
you can choose a minimum and maximum size. The font then expands or
shrinks between those two values to always fit within the text box.

It is worth taking a moment to try out the different settings, especially for Overflow
and Best Fit. If you don’t understand how to use these properties, you may be
surprised to find your text mysteriously disappearing (because it has been truncated),
and it may take time to figure out why.

Buttons
Buttons are elements that allow click input from the user. They may seem complex at
first look, but remember that, as mentioned earlier, a button is really just an image with
a text object child and a little more functionality. You can add buttons to your scene by

selecting GameObject > UI > Button.
Where a button is different from either of the other controls you’ve seen so far is that it
is interactable. Because of that, it has some interesting properties and features. For
instance, buttons can have transitions, they can be navigated, and they can have
OnClick event handlers. Table 14.3 lists the Button component properties.

TABLE 14.3 Properties of the Button Component

Property Description

Interactable Indicates whether the user can click the button.

Transition Specifies how the button should respond to user interaction (see Figure
14.8). The available events to respond to are Normal (nothing
happening), Highlighted (mouse over), Pressed, and Disabled. By
default, the button simply changes color (Color Tint). You could also
remove any transitions (None) or cause the button to change images
(Sprite Swap). Finally, you can choose Animation to use full
animations, which can make your buttons look very impressive.

Navigation Specifies how users will navigate between buttons if they are using
devices like controllers or joysticks (that is, no mouse or touch screen).
Clicking Visualize allows you to see how buttons will be navigated; this
works only if you have more than one button on the canvas.

On Click () Specifies what happens when you click the button (as discussed in more
detail later in this hour).

FIGURE 14.8

The transition type selector.

On Click ()
When users are done marveling at your various button transition effects, they may
eventually click some buttons. You can use the On Click () property at the bottom of
the Inspector to call a function from a script and to access many other components.
You can pass parameters to any method you call, which means the designer can
control the behavior without entering code. An advanced use of this functionality
might be to call methods on a game object or make a camera look at a target directly.

 TRY IT YOURSELF

Using a Button
Follow these steps to put what you know so far to practice and create a button,
give it some color transitions, and make it change its text when clicked:

1. Create a new scene or project.

2. Add a button to the scene (by selecting GameObject > UI > Button).

3. Under the Button (Script) component in the Inspector, set Highlighted Color
to red and Pressed Color to green (see Figure 14.9 for the finished settings).

FIGURE 14.9
The finished button settings.

4. Add a new On Click () handler by clicking the little + sign at the bottom of

the Inspector (see Figure 14.9). Now that the handler is looking for the
object to manipulate, it says None (Object).

5. Expand the button game object in the Hierarchy view so you can see the
Text child object. Drag the Text object onto the Object property of the event
handler.

6. In the function drop-down (which says No Function), specify what you want
the button to do to the chosen object. To do this, click the drop-down (see #1
in Figure 14.10) and then select Text (#2) > string text (#3).

FIGURE 14.10
Setting the click event to change the button text.

7. In the value box that appears, type Released.

8. Play the game and try hovering over the button, pressing and holding, and
then releasing the button. Notice that the color changes and the text changes
when you click.

TIP

Sorting Elements
Now that you are familiar with various elements, it is a good time to mention how
they are drawn. You may have noticed that the Canvas component you looked at
earlier in this hour has a Sorting Layer property (like the ones you’ve seen with 2D
images in other hours). This property is only used to sort between multiple
canvases within the same scene. To sort UI elements on the same canvas, you use
the order of the objects in the Hierarchy view. Therefore, if you want an object
drawn on top of another object, you move it lower in the Hierarchy view so it is
drawn later.

TIP

Presets
Unity 2018.1 added the concept of component presets. Presets are the saved
properties of a component (such as the UI Text component) that can be applied to
quickly set up new components. The presets menu is in the upper-right corner of a
component, next to the settings cog in the Inspector view. While presets can work
for any type of component, they are specifically mentioned here, instead of earlier,
because of how well they work with the UI. A very common use case is wanting all
the text in your game to match. You don't necessarily want to make all your text a
prefab, but you can quickly apply a text preset.

Canvas Render Modes
Unity offers three powerful options for the way your UI is rendered to the screen. You
can choose the mode in the Inspector by selecting Canvas and choosing Render
Mode. You then see the modes shown in Figure 14.11. The use of each canvas mode is
very complex, so you shouldn’t try to master them right now. Instead, the aim here is
to describe the three modes (Screen Space–Overlay, Screen Space–Camera, and World
Space) so that you can choose what is best for your games.

FIGURE 14.11
The three different canvas render modes.

Screen Space–Overlay
Screen Space–Overlay, which is the default mode, is the easiest-to-use and also least
powerful version of the canvas modes. A UI in Screen Space–Overlay mode draws
over the top of everything on the screen, regardless of the camera settings or the
position of the camera in the world. In fact, where this UI appears in the Scene view
bears no relationship to the objects in the world because it isn’t actually rendered by a
camera.
The UI appears in the Scene view at a fixed position, with the bottom-left at (0, 0, 0) in
the world. The scale of the UI is different from the world scale, and what you see on
the canvas is at a scale of 1 world unit for every pixel in your Game view. If you are
using this type of UI in your game and find its place in the world to be inconvenient
while you’re working, you can hide it to get it out of the way. To do so, you can click
the Layers drop-down in the editor and hide the eye icon next to the UI layer (see
Figure 14.12). The UI is then hidden in the Scene view only (through it will still be
there when you run your game). Just be sure not to forget to turn it back on, or you
might get confused about why your UI won’t show up!

FIGURE 14.12
Hiding your UI.

Screen Space–Camera
Screen Space–Camera mode is similar to Screen Space–Overlay, but the UI is
rendered by the camera of your choice. You can rotate and scale UI elements to create

much more dynamic 3D interfaces.
Unlike Screen Space–Overlay mode, this mode uses the camera to render the UI. This
means effects such as lighting affect the UI, and objects can even pass between the
camera and the UI. This can take some extra work, but the payoff is that your interface
can feel much more part of the world.
Note that in this mode, the UI stays in a fixed position relative to the camera you chose
to render it. Moving the camera also moves the canvas. It can be a good idea to use a
second camera solely for rendering your canvas (so it isn’t in the way of the rest of
your scene).

World Space
The final UI mode to consider is the World Space mode. Imagine a virtual museum,
where every object you look at has detailed information about the object right next to
it. Furthermore, this pop-up information could include buttons to allow you to read
more or go to other sections of the museum. If you can imagine that, then you are only
scratching the surface of what you can do with a World Space mode canvas.
Notice that the Rect transform of the canvas in World Space mode is no longer grayed
out, and the Canvas component itself can be edited and resized (see Figure 14.13).
Because in this mode the canvas is actually a game object in the world, it is no longer
drawn over the rest of your game, like a HUD. Instead, it is fixed in the world and can
be a part of or blended with the rest of your scene objects.

FIGURE 14.13
The Rect transform, available with the World Space mode.

 TRY IT YOURSELF

Exploring the Render Modes
Follow these steps to look at the three different UI render modes:

1. Create a new 3D scene or project.

2. Add a UI canvas to the scene (by selecting GameObject > UI > Canvas).

3. Note that the Rect transform is disabled. Also try zooming in to the Scene
view to see where the canvas sits.

4. Switch the render mode to Screen Space–Camera. For Render Camera
choose Main Camera. Notice that the canvas changes size and position
when you do this.

5. Notice what happens when you move the camera. Also notice what happens
when you change the camera’s Projection property from Perspective to
Orthographic and back.

6. Switch to the World Space mode. Note that you can now change the Rect
transform for the canvas, move it, rotate it, and scale it.

Summary
You started this lesson by looking at the building blocks of any UI: the canvas and
event system. You then learned about the Rect transform and how anchor points help
you make versatile UIs that can work on many devices. From there, you explored
various UI elements available for use. You then briefly looked at the fundamentally
different UI modes: Screen Space–Overlay, Screen Space–Camera, and World Space.

Q&A
Q. Does every game need a user interface?
A. Usually a game benefits from having a well-thought-out UI. It is rare for a game

to have no UI whatsoever. That said, it is always a good idea to be a minimalist
with a UI, giving the players just the information they need—when they need it.

Q. Can I mix canvas render modes in a scene?
A. Yes, you can. You might want to have more than one canvas in a scene and give

them different render modes.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. What does UI stand for?
2. What two game objects always come along with a UI in Unity?
3. What UI render mode would you use to put a question mark above a player’s

head in a 3D game?
4. What render mode is most likely to be best for a simple HUD?

Answers
1. User interface (This was an easy warm-up question!)
2. Canvas and EventSystem components
3. You would use World Space mode because the interface element is positioned

within world space, not relative to the player’s eyes.
4. Screen Space–Overlay

Exercise
In this exercise, you will build a simple but complete menu system that you can adapt
for use in all your games. You will make use of a splash screen, a fade-in, some
background music, and more.

1. Create a new 2D project. Add a UI panel (by selecting GameObject > UI >
Panel). Note that Unity also adds the required Canvas and EventSystem
components to the Hierarchy view for you.

2. Import the Hour14Package.unitypackage file provided in the book files. Click
clouds.jpg in your Assets folder, and ensure that Texture Type is set to Sprite
(2D and UI).

3. Set this image as the source image in the Panel’s Inspector. Note that the image
is a little transparent by default, letting the Main Camera’s background color
show through. Feel free to adjust the transparency by bringing up the color dialog
and adjusting the A slider (where A stands for alpha).

4. Add a title and a subtitle (by selecting GameObject > UI > Text). Move them
so they sit nicely on the panel (see Figure 14.14).

FIGURE 14.14
The complete UI.

5. Add a button (by selecting GameObject > UI > Button). Name the button Start
and set its Text child object to say Start Game. Position the button where you
wish, remembering to select the button (not the Text child object) before you
drag.

6. Save your scene as Menu (by selecting File > Save Scene). Now create a new
scene to act as a placeholder for your game and save it as Game. Finally, add
both scenes to the build order by opening the build settings (by selecting File >
Build Settings) and dragging both scenes into the Scenes in Build section.
Ensure that the Menu scene is on top.

7. Switch back to your menu scene. Drag the LevelManager prefab that you
imported from your Assets folder into the Hierarchy view.

8. Find the Start button and set its On Click () property to the level manager’s
LoadGame () method (see Figure 14.15).

FIGURE 14.15
Setting the Start Game button’s On Click () handler.

9. Play your scene. Click the Start Game button, and the game should switch to the
empty Game scene. Congratulations! You have a menu system to use in future
games!

HOUR 15
Game 3: Captain Blaster

What You’ll Learn in This Hour:
 How to design the game Captain Blaster
 How to build the Captain Blaster world
 How to build the Captain Blaster entities
 How to build the Captain Blaster controls
 How to further improve Captain Blaster

Let’s make a game! In this hour, you’ll make a 2D scrolling shooter game titled
Captain Blaster. You’ll start by designing the various elements of the game. From
there, you’ll begin building the scrolling background. Once the idea of motion is
established, you’ll begin building the various game entities. When the entities are
done, you’ll construct the controls and gamify the project. You’ll finish this hour by
analyzing the game and identifying ways to improve it.

TIP

The Completed Project
Be sure to follow along in this hour to build the complete game project. In case you
get stuck, you can find a completed copy of the game in the book assets for Hour
15. Take a look at it if you need help or inspiration.

Design
You learned about design elements in Hour 6, “Game 1: Amazing Racer.” This hour,
you’ll dive right into them.

The Concept
As mentioned earlier, Captain Blaster is a 2D scrolling shooter-style game. The

premise is that the player will be flying around a level, destroying meteors, and trying
to stay alive. The neat thing about 2D scrolling games is that the players themselves
don’t actually have to move at all. The scrolling background simulates the idea that the
player is going forward. This reduces the required player skill and allows you to create
more challenges in the form of enemies.

The Rules
The rules of this game state how to play and allude to some of the properties of the
objects. The rules for Captain Blaster are as follows:

 The player plays until being hit by a meteor. There is no win condition.
 The player can fire bullets to destroy the meteors. The player earns 1 point per
meteor destroyed.
 The player can fire two bullets per second.
 The player is bounded by the sides of the screen.
 Meteors come continuously until the player loses.

The Requirements
The requirements for this game are simple:

 A background sprite to be outer space.
 A ship sprite.
 A meteor sprite.
 A game manager. This will be created in Unity.
 Interactive scripts. These will be written in MonoDevelop or Visual Studio as
usual.

The World
Because this game takes place in space, the world will be fairly simple to implement.
The game will be 2D, and the background will move vertically behind the player to
make it seem like the player is moving forward. In actuality, the player will be
stationary. Before you get the scrolling in place, though, you need to set up your
project. Start with these steps:

1. Create a new 2D project named Captain Blaster.

2. Create a folder named Scenes and save your scene as Main.

3. In the Game view, change the aspect ratio to 5:4 (see Figure 15.1).

FIGURE 15.1
Setting the game’s aspect ratio.

The Camera
Now that the scene is set up properly, it is time to work on the camera. Because this is
a 2D project, you have an orthographic camera, which lacks depth perspective and is
great for making 2D games. To set up the Main Camera, simply set the Size property
to 6. (See Figure 15.2 for a list of the camera’s properties.)

FIGURE 15.2

The Main Camera properties.

The Background
The scrolling background can be a little tricky to set up correctly. Basically, you need
to have two background objects moving down the screen. As soon as the bottom object
goes offscreen, you place it above the screen. You keep flipping back and forth
between them, and the player doesn’t know this is what’s happening. To create the
scrolling background, follow these steps:

1. Create a new folder named Background. Locate the Star_Sky.png image from
the book files and import it into Unity by dragging it into the Background
folder you just created. Remember that because you made a 2D project, this
image automatically imports as a sprite.

2. Select the newly imported sprite in the Project view and change its Pixels per
Unit property in the Inspector view to 50. Drag the Star_Sky sprite into the
scene and ensure that it is positioned at (0, 0, 0).

3. Create a new script in your Background folder named ScrollBackground and
drag it onto the background sprite in the scene. Put the following code in the
script:

Click here to view code image

public float speed = -2f;
public float lowerYValue = -20f;
public float upperYValue = 40;

void Update()
{
 transform.Translate(0f, speed * Time.deltaTime, 0f);
 if (transform.position.y <= lowerYValue)
 {
 transform.Translate(0f, upperYValue, 0f);
 }
}

4. Duplicate the background sprite and place it at (0, 20, 0). Run the scene. You
should see the background seamlessly stream by.

NOTE

Alternate Organization
Up until now, you have used a fairly straightforward system for organization.
Assets went into corresponding folders: sprites in a sprites folder, scripts in a
scripts folder, and so on. In this hour, however, you are going to do something new.
This time, you are going to group assets based on their “entity”: all background
files together, ship assets together, and so on. This system works well for finding

all related assets quickly. Don’t worry if you like the other system, though. You can
still search and sort asset names and types by using the search bar and filter
properties located at the top of the Project view. As Ben Tristem (Howdy, Ben!)
recently told me, “There’s more than one way to do things!”

NOTE

Seamless Scrolling
You might notice a small line in the scrolling background you just created. This is
due to the fact that the image used for the background wasn’t made specifically to
tile together. Generally, it isn’t very noticeable, and the actions of the game will
more than cover it up. If you want a more seamless background in the future,
however, you should use an image made to tile together.

Game Entities
In this game, you need to make three primary entities: the player, the meteor, and the
bullet. The interaction between these items is very simple. The player fires bullets.
Bullets destroy meteors. Meteors destroy the player. Because the player can
technically fire a large number of bullets, and because a large number of meteors can
spawn, you need a way to clean them up. Therefore, you also need to make triggers
that destroy bullets and meteors that enter them.

The Player
Your player will be a spaceship. The sprites for both the spaceship and the meteors can
be found in the book assets for Hour 15. (Thanks to Krasi Wasilev, at
http://freegameassets.blogspot.com.) To create the player, follow these steps:

1. Create a new folder in your Project view called Spaceship and import
spaceship.png from the book files into this folder. Note that the spaceship
sprite is currently facing downward. This is okay.

2. Select the spaceship sprite and in the Inspector set Sprite Mode to Multiple
and click Apply. Then click Sprite Editor to start slicing your sprite sheet. (If
you’ve forgotten about slicing, look back at Hour 12, “2D Game Tools.”)

3. Click Slice in the upper left of the Sprite Editor window and set Type to Grid
By Cell Size. Set x to 116 and y to 140 (see Figure 15.3). Click Slice and
notice the outlines around the ships. Click Apply and close the Sprite Editor
window.

http://freegameassets.blogspot.com

FIGURE 15.3
Slicing the spaceship sprite sheet.

4. Open the tray of the spaceship and select all the frames. You can do this by
clicking the first frame, holding down Shift, and then clicking the last frame.

5. Drag the sprite frames to the Hierarchy view or Scene view. This causes a
Create New Animation dialog to appear, which will save your new animation
as an .anim file. Name this animation Ship. When you are done, an animated
sprite will be added to the scene, and an animator controller and animation clip
asset will be added to the Project view as in Figure 15.4. (You will learn more
about animation in Hour 17, “Animations,” and Hour 18, “Animators.”)

FIGURE 15.4
The finished spaceship sprite.

6. Set the ship’s position to (0, -5, 0) and scale it to (1, -1, 1). Note that scaling to
-1 in the y axis turns the ship to face upward.

7. On the ship’s Sprite Renderer component, set the Order in Layer property to 1.
This ensures that the ship always appears in front of the background.

8. Add a Polygon Collider component to the ship (by selecting Add Component
> Physics2D > Polygon Collider). This collider will automatically surround
your ship for very decent collision detection accuracy. Be sure to check the Is
Trigger property in the Inspector to ensure that it is a trigger collider.

9. Play the game and notice the subtle animation of the ship’s engines.

You should now have a nice, animated upward-facing spaceship ready to destroy some
meteors.

The Meteors
The steps for creating the meteors are similar to those for creating the spaceship. The
only difference is that the meteors will end up in a prefab for later use. Follow these
steps:

1. Create a new folder called Meteor and import meteor.png into it. This is a

sprite sheet that contains 19 frames of animation.

2. Set Sprite Mode to Multiple and then enter the Sprite Editor as before.

3. Set Slice Type to Automatic and leave the rest of the settings at their defaults.
Click Apply to apply your changes and close the Sprite Editor window.

4. Expand the tray of the meteor sprite and select all 19 frames of the meteor
sprite sheet. Drag these frames into the Hierarchy view and, when prompted,
name the animation Meteor. Unity creates another animated sprite with the
necessary animation components for you. Handy!

5. Select the meteor_0 game object in the Hierarchy view and add a Circle
Collider 2D component (by selecting Add Component > Physics2D > Circle
Collider 2D). Note that the green outline roughly fits the outline of the sprite.
This is good enough to work in the Captain Blaster game. A polygon collider
would be less efficient and would not give you a noticeable improvement in
accuracy.

6. On the meteor’s Sprite Renderer component, set the Order in Layer property to
1 to ensure that the meteor always appears in front of the background.

7. Add a Rigidbody2D component to the meteor (by selecting Add Component
> Physics2D > Rigidbody2D). Set the Gravity Scale property to 0.

8. Rename the meteor_0 game object Meteor and then drag it from your
Hierarchy view into your Meteor folder in the Project view (see Figure 15.5).
Unity creates a prefab of the meteor that you will use later.

9. Now that you have captured the meteor setup in a prefab, delete the instance in
your Hierarchy view. You now have a reusable meteor just waiting to cause
havoc.

FIGURE 15.5
Creating the meteor prefab.

The Bullets
Setting up bullets in this game is simple. Because they will be moving very quickly,
they don’t need any detail. To create the bullet, follow these steps:

1. Create a folder named Bullet and import bullet.png into it. With the new bullet
sprite selected in the Project view, set the Pixels per Unit property in the
Inspector to 400.

2. Drag a bullet sprite into your scene. Using the Color property of the Sprite
Renderer component, give the bullet a strong green color.

3. On the Sprite Renderer component of the bullets, set the Order in Layer
property to 1 to ensure that the bullet always appears in front of the
background.

4. Add a Circle Collider 2D component to the bullet. Also add a Rigidbody2D
component to the bullet (by selecting Add Component > Physics2D >
Rigidbody2D) and set the Gravity Scale property to 0.

5. To keep with convention, rename the bullet game object Bullet. Drag the
bullet from the Hierarchy view into your Bullet folder to turn it into a prefab.
Delete the Bullet object from your scene.

That’s the last of the primary entities. The only thing left to make is the triggers that
will prevent the bullets and meteor from traveling forever.

The Triggers
The triggers (which in this game will be called “shredders”) are simply two colliders,
one of which will sit above the screen and the other below it. Their job is to catch any
errant bullets and meteors and “shred” them. Follow these steps to create the
shredders:

1. Add an empty game object to the scene (by selecting GameObject > Create
Empty) and name it Shredder. Position it at (0, -10, 0).

2. Add a Box Collider 2D component to the shredder object (by selecting Add
Component > Physics2D > Box Collider 2D). In the Inspector view, be sure
to put a check next to the Is Trigger property of the Box Collider 2D
component and set its size to (16, 1).

3. Duplicate the shredder and place the new one at (0, 10, 0).

Later these triggers will be used to destroy any objects that hit them, such as stray
meteors or bullets.

The UI
Finally, you need to add a simple user interface to display the player’s current score
and to say “Game Over” when the player dies. Follow these steps:

1. Add a UI Text element to the scene (by selecting GameObject > UI > Text)
and rename it Score.

2. Position the score text’s anchor in the upper-left corner of the canvas and set
its position to (100, -30, 0) (see Figure 15.6).

FIGURE 15.6
The player score settings.

3. Set the Text property of the Score object to 0 (which is the initial score), check
Best Fit, and set Color to white.

Now you can add the Game Over text that will appear when the player loses:

1. Add another UI Text element to the scene and rename it Game Over. Leave
the anchor in the center and set its position to (0, 0, 0).

2. Set the width of the Game Over text object to 200 and set the height to 100.

3. Change the Text to Game Over!, check the Best Fit property, set the
paragraph alignment to centered, and change the color to red.

4. Finally, uncheck the box next to the Text (Script) component’s name to disable
the text until it is needed (see Figure 15.7). Note that Figure 15.7 illustrates the
text before being disabled so you can see what it looks like.

FIGURE 15.7
The Game Over! sign settings.

Later you will connect this score display to your GameManager script so that it can be
updated. Now all your entities are in place, and it is time to begin turning this scene
into a game.

Controls
Various script components need to be assembled to make this game work. The player
needs to be able to move the ship and shoot bullets. The bullets and meteors need to be
able to move automatically. A meteor spawn object must keep the meteors flowing.
The shredders need to be able to clean up objects, and a manager needs to keep track
of all the action.

The Game Manager
The game manager is basic in this game, and you can add it first. To create the game
manager, follow these steps:

1. Create an empty game object and name it GameManager.

2. Because the only asset you have for the game manager is a script, create a new
folder called Scripts so that you have a place for any simple scripts you create.

3. Create a new script named GameManager in the Scripts folder and attach it to
the GameManager game object. Overwrite the contents of the script with the

following code:

Click here to view code image

using UnityEngine;
using UnityEngine.UI; // Note this new line is needed for UI

public class GameManager : MonoBehaviour
{
 public Text scoreText;
 public Text gameOverText;

 int playerScore = 0;

 public void AddScore()
 {
 playerScore++;
 // This converts the score (a number) into a string
 scoreText.text = playerScore.ToString();
 }

 public void PlayerDied()
 {
 gameOverText.enabled = true;
 // This freezes the game
 Time.timeScale = 0;
 }
}

In this code, you can see that the manager is responsible for keeping the score and
knowing when the game is running. The manager has two public methods:
PlayerDied() and AddScore(). PlayerDied() is called by the player when
a meteor hits it. AddScore() is called by a bullet when it kills a meteor.
Remember to drag the Score and Game Over elements onto the GameManager script
(see Figure 15.8).

FIGURE 15.8
Attaching the text elements to the game manager.

The Meteor Script
Meteors are basically going to fall from the top of the screen and get in the player’s
way. To create the meteor script:

1. Create a new script in your Meteor folder and call it MeteorMover.

2. Select your meteor prefab. In the Inspector view, locate the Add Component
button (see Figure 15.9) and select Add Component > Scripts >
MeteorMover.

3. Overwrite the code in the MeteorMover script with the following:
Click here to view code image

using UnityEngine;

public class MeteorMover : MonoBehaviour
{
 public float speed = -2f;

 Rigidbody2D rigidBody;

 void Start()
 {
 rigidBody = GetComponent<Rigidbody2D>();
 // Give meteor an initial downward velocity
 rigidBody.velocity = new Vector2(0, speed);
 }
}

FIGURE 15.9
Adding the Meteor script to the meteor prefab.

The meteor is very basic and contains only a single public variable to represent its
downward velocity. In the Start() method, you get a reference to the Rigidbody 2D
component on the meteor. You then use that rigidbody to set the velocity of the
meteor; it moves downward because the speed has a negative value. Notice that the
meteor is not responsible for determining collision.
Feel free to drag the meteor prefab into the Hierarchy view and click Play so you can
see the effect of the code you just wrote. The meteor should slide down and spin
slightly. If you do this, be sure to delete the Meteor instance from the Hierarchy view
when you’re done.

The Meteor Spawn
So far, the meteors are just prefabs with no way of getting into the scene. You need an
object to be responsible for spawning the meteors at an interval. Create a new empty
game object, rename it Meteor Spawn, and place it at (0, 8, 0). Create a new script
named MeteorSpawn in your Meteor folder and place it on the Meteor Spawn object.
Overwrite the code in the script with the following:
Click here to view code image

using UnityEngine;

public class MeteorSpawn : MonoBehaviour
{
 public GameObject meteorPrefab;
 public float minSpawnDelay = 1f;
 public float maxSpawnDelay = 3f;
 public float spawnXLimit = 6f;

 void Start()
 {
 Spawn();
 }

 void Spawn()
 {
 // Create a meteor at a random x position
 float random = Random.Range(-spawnXLimit, spawnXLimit);
 Vector3 spawnPos = transform.position + new Vector3(random, 0f, 0f);
 Instantiate(meteorPrefab, spawnPos, Quaternion.identity);

 Invoke("Spawn", Random.Range(minSpawnDelay, maxSpawnDelay));
 }
}

This script is doing a few interesting things. First, it creates two variables to manage
the meteor timing. It also declares a GameObject variable, which will be the meteor
prefab. In the Start() method you call the function Spawn(). This function is
responsible for creating and placing the meteors.
You can see that the meteor is spawned at the same y and z coordinate as the spawn
point, but the x coordinate is offset by a number between -6 and 6. This allows the
meteors to spawn across the screen and not always in the same spot. When the position
for the new meteor is determined, the Spawn() function instantiates (creates) a
meteor at that position with default rotation (Quaternion.identity). The last
line invokes a call to the spawn function again. This method, Invoke(), calls the
named function (in this case Spawn()) after a random amount of time. That random
amount is controlled by the two timing variables.
In the Unity editor, click and drag your meteor prefab from the Project view onto the
Meteor Prefab property of the Meteor Spawn Script component of the Meteor Spawn
object. (Try saying that fast!) Run the scene, and you should see meteors spawning
across the screen. (Attack, my minions!)

The DestroyOnTrigger Script
Now that you have meteors spawning everywhere, it is a good idea to begin cleaning
them up. Create a new script called DestroyOnTrigger in your Scripts folder (since it is
a single unrelated asset) and attach it to both the upper and the lower shredder objects

you created previously. Add the following code to the script, ensuring that this code is
outside a method but inside the class:
Click here to view code image

void OnTriggerEnter2D(Collider2D other)
{
 Destroy(other.gameObject);
}

This basic script simply destroys any object that enters it. Because the players cannot
move vertically, you don’t need to worry about them getting destroyed. Only bullets
and meteors can enter the triggers.

The ShipControl Script
Right now, meteors are falling down, and the player can’t get out of the way. You need
to create a script to control the player next. Create a new script called ShipControl in
your Spaceship folder and attach it to the spaceship object in your scene. Replace the
code in the script with the following:
Click here to view code image

using UnityEngine;

public class ShipControl : MonoBehaviour
{
 public GameManager gameManager;
 public GameObject bulletPrefab;
 public float speed = 10f;
 public float xLimit = 7f;
 public float reloadTime = 0.5f;

 float elapsedTime = 0f;

 void Update()
 {
 // Keeping track of time for bullet firing
 elapsedTime += Time.deltaTime;

 // Move the player left and right
 float xInput = Input.GetAxis("Horizontal");
 transform.Translate(xInput * speed * Time.deltaTime, 0f, 0f);

 // Clamp the ship's x position
 Vector3 position = transform.position;
 position.x = Mathf.Clamp(position.x, -xLimit, xLimit);
 transform.position = position;

 // Spacebar fires. The default InputManager settings call this "Jump"
 // Only happens if enough time has elapsed since last firing.

 if (Input.GetButtonDown("Jump") && elapsedTime > reloadTime)
 {
 // Instantiate the bullet 1.2 units in front of the player
 Vector3 spawnPos = transform.position;
 spawnPos += new Vector3(0, 1.2f, 0);
 Instantiate(bulletPrefab, spawnPos, Quaternion.identity);

 elapsedTime = 0f; // Reset bullet firing timer
 }
 }

 // If a meteor hits the player
 void OnTriggerEnter2D(Collider2D other)
 {
 gameManager.PlayerDied();
 }
}

This script does a lot of work. It starts by creating variables for the game manager, the
bullet prefab, speed, movement limitations, and bullet timing.
In the Update() method, the script starts by getting the elapsed time. This is used to
determine whether enough time has passed to fire a bullet. Remember that according
to the rules, the player can fire a bullet only every half a second. The player is then
moved along the x axis based on input. The player’s x axis position is clamped (that is,
limited) so that the player cannot go off the screen to the left or right. After that, the
script determines whether the player is pressing the spacebar. Normally in Unity, the
spacebar is used for a jump action. (This could be renamed in the input manager, but it
was left as it is to avoid any confusion.) If it is determined that the player is pressing
the spacebar, the script checks the elapsed time against the reloadTime (currently
half a second). If the time is greater, the script creates a bullet. Notice that the script
creates the bullet just a little above the ship. This prevents the bullet from colliding
with the ship. Finally, the elapsed time is reset to 0 so the count for the next bullet
firing can start.
The last part of the script contains the OnTriggerEnter2D() method. This method
is called whenever a meteor hits the player. When that happens, the GameManager
script is informed that the player died.
Back in the Unity editor, click and drag the bullet prefab onto the Bullet property of
the Ship Control component on the spaceship. Likewise, click and drag the Game
Manager object onto the Ship Control component to give it access to the
GameManager script (see Figure 15.10). Run the scene and notice that you can now
move the player. The player should be able to fire bullets (although they don’t move).
Also notice that the player can now die and end the game.

FIGURE 15.10
Connecting the ShipControl script.

The Bullet Script
The last bit of interactivity you need is to make the bullets move and collide. Create a
new script called Bullet in your Bullet folder and add it to the bullet prefab. Replace
the code in the script with the following:
Click here to view code image

using UnityEngine;

public class Bullet : MonoBehaviour
{
 public float speed = 10f;

 GameManager gameManager; // Note this is private this time

 void Start()
 {
 // Because the bullet doesn't exist until the game is running
 // we must find the Game Manager a different way.
 gameManager = GameObject.FindObjectOfType<GameManager>();

 Rigidbody2D rigidBody = GetComponent<Rigidbody2D>();
 rigidBody.velocity = new Vector2(0f, speed);
 }

 void OnCollisionEnter2D(Collision2D other)
 {
 Destroy(other.gameObject); // Destroy the meteor
 gameManager.AddScore(); // Increment the score
 Destroy(gameObject); // Destroy the bullet

 }
}

The major difference between this script and the meteor script is that this script needs
to account for collision and the player scoring. The Bullet script declares a variable to
hold a reference to the GameManager script, just as the ShipControl script does.
Because the bullet isn’t actually in the Scene view, however, it needs to locate the
GameManager script a little differently. In the Start() method, the script searches
for the GameControl object by type using the
GameObject.FindObjectOfType<Type>() method. The reference to the
GameManager script is then stored in the variable gameManager. It is worth noting
that Unity’s Find() methods (such as the one used here) are very slow and should be
used sparingly.
Because neither the bullet nor the meteor has a trigger collider on it, the use of the
OnTriggerEnter2D() method will not work. Instead, the script uses the method
OnCollisionEnter2D(). This method does not read in a Collider2D variable.
Instead, it reads in a Collision2D variable. The differences between these two
methods are irrelevant in this case. The only work being done is destroying both
objects and telling the GameManager script that the player scored.
Go ahead and run the game. You should find that the game is now fully playable.
Although you cannot win (that is intentional), you certainly can lose. Keep playing and
see what kind of score you can get!
As a fun challenge, consider trying to make the values of minSpawnDelay and
maxSpawnDelay get smaller over time, causing the meteors to spawn more quickly
as the game is played.

Improvements
It is time to improve the game. As with the games you have created in earlier hours,
several parts of Captain Blaster are left intentionally basic. Be sure to play through the
game several times and see what you notice. What things are fun? What things are not
fun? Are there any obvious ways to break the game? Note that a very easy cheat has
been left in the game to allow players to get a high score. Can you find it?
Here are some things you could consider changing:

 Try modifying the bullet speeds, firing delay, or bullet flight path.
 Try allowing the player to fire two bullets side by side.
 Make the meteors spawn faster as time goes on.
 Try adding a different type of meteor.
 Give the player extra health—and maybe even a shield.
 Allow the player to move vertically as well as horizontally.

This is a common genre, and there are many ways you can make it unique. Try to see

just how custom you can make the game. It is also worth noting that you will learn
about particle systems in Hour 16, “Particle Systems,” and this game is a prime
candidate for trying them out.

Summary
In this hour, you made the game Captain Blaster. You started by designing the game
elements. Next, you built the game world. You constructed and animated a vertically
scrolling background. From there, you built the various game entities. You added
interactivity through scripting and controls. Finally, you examined the game and
looked for improvements.

Q&A
Q. Did Captain Blaster really achieve the military rank of captain, or is it just a

name?
A. It’s hard to say, as it is all mostly speculation. One thing is for certain: They

don’t give spaceships to mere lieutenants!

Q. Why delay bullet firing by half a second?
A. Mostly it is a balance issue. If the player can fire too fast, the game has no

challenge.

Q. Why use a polygon collider on the ship?
A. Because the ship has an odd size, a standard shaped collider wouldn’t be very

accurate. Luckily, you can use the polygon collider to map closely to the
geometry of the ship.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. What is the win condition for the game?
2. How does the scrolling background work?
3. Which objects have rigidbodies? Which objects have colliders?
4. True or False: The meteor is responsible for detecting collision with the player.

Answers
1. This is a trick question. The player cannot win the game. The highest score,

however, allows the player to “win” outside the game.
2. Two identical sprites are positioned, one above the other, on the y axis. They

then leapfrog across the camera to seem endless.
3. The bullets and meteors have rigidbodies. The bullets, meteors, ship, and

triggers have colliders.
4. False. The ShipControl script detects the collision.

Exercise
This exercise is a little different from the ones you have done so far. A common part of
the game refinement process is to have a game playtested by people who aren’t
involved with the development process. This allows people who are completely
unfamiliar with the game to give honest, first-experience feedback, which is incredibly
useful. For this exercise, have other people play the game. Try to get a diverse group
of people—some avid gamers and some people who don’t play games, some people
who are fans of this genre and some people who aren’t. Compile their feedback into
groupings of good features, bad features, and things that can be improved. In addition,
try to see whether there are any commonly requested features that currently aren’t in
the game. Finally, see if you can implement or improve your game based on the
feedback received.

HOUR 16
Particle Systems

What You’ll Learn in This Hour:
 The basics of particle systems
 How to work with modules
 How to use the Curves Editor

In this hour, you’ll learn how to use Unity’s particle system. You’ll start by learning
about particle systems in general and how they work. You’ll experiment with the many
different particle system modules. You’ll wrap up the hour by experimenting with the
Unity Curves Editor.

Particle Systems
A particle system is basically an object or component that emits other objects,
commonly referred to as particles. These particles can be fast, slow, flat, shaped,
small, large, and so on. The definition is very generic because these systems can
achieve a great variety of effects with the proper settings. They can make jets of fire,
plumes of billowing smoke, fireflies, rain, fog, or anything else you can think of.
These effects are commonly referred to as particle effects.

Particles
A particle is a single entity that is emitted by a particle system. Because many
particles are generally emitted quickly, it is important for particles to be as efficient as
possible. This is the reason that most particles are 2D billboards. A billboard is a flat
image that always faces the camera. This gives the illusion that billboards are 3D,
while still giving great performance.

Unity Particle Systems
To create a particle system in a scene, you can either create a particle system object or

add a particle system component to an existing object. To create a particle system
object, select GameObject > Effects > Particle System. To add a particle system
component to an existing object, select the object and click Add Component >
Effects > Particle System.

 TRY IT YOURSELF

Creating a Particle System
Follow these steps to create a particle system object in a scene:

1. Create a new project or scene.

2. Add a particle system by selecting GameObject > Effects > Particle
System.

3. Notice how the particle system emits white particles in the Scene view (see
Figure 16.1). This is the basic particle system. Try rotating and scaling the
particle system to see how it reacts.

FIGURE 16.1
The basic particle system.

NOTE

Custom Particles

By default, the particles in Unity are small white spheres that fade into
transparency. This is a really useful generic particle, but it can only take you so far.
Sometimes you want something more specific (to make fire, for example). If you
want, you can make your own particles out of any 2D image to create effects that
exactly suit your needs.

Particle System Controls
You might have noticed that when you added a particle system to your scene, it began
emitting particles in the Scene view. You may also have noticed that particle effect
controls appeared (see Figure 16.2). These controls allow you to pause, stop, and
restart the particle animation in a scene. This can be very helpful when tweaking the
behavioral components of a particle system.

FIGURE 16.2
The particle effect control.

These controls also allow you to speed up the playback and tell you how long an effect
has been playing. This can be very useful when testing duration effects. Note that the
controls show the playback speed and playback time only when the game is stopped.

NOTE

Particle Effects
To create complex and visually appealing effects, you can have several particle
systems work together (a smoke and a fire system, for example). Multiple particle
systems working together creates a particle effect. In Unity, creating a particle
effect is achieved by nesting particle systems together. One particle system can be
the child of another, or they can both be children of a different object. The result of
a particle effect in Unity is that the effects are treated as one system, and you can
use the particle effect controls to control the entire particle effect as one unit.

Particle System Modules
At its root, a particle system is just a point in space that emits particle objects. How

particles look and behave and the effects they cause are all determined by modules.
Modules are various properties that define some form of behavior. In Unity’s particle
system, modules are an integrated and essential component. This section lists the
modules and explains briefly what each one does.
Note that with the exception of the default module (covered first), all modules can be
turned on and off. To turn modules on or off, put a check mark by the module’s name.
To hide or show modules, click the plus sign (+) next to Particle System (see Figure
16.3). You can also click the name of a particle system in the list to toggle its
visibility. By default, all modules are visible, and only the Emission, Shape, and
Renderer modules are enabled. To expand a module, simply click its title.

FIGURE 16.3
Showing all modules.

NOTE

Properties Overview, Briefly
Several modules have properties that are either self-explanatory (like the length and
width property of a rectangle) or have been covered previously. For the sake of
simplicity (and to prevent this hour from being 50 pages), these properties are not
described in this section. So if you see more properties on your screen than are

covered in this text, don’t worry; that is intentional.

NOTE

Constant, Curve, Random
A value curve allows you to change the value of a property over the lifetime of a
particle system or an individual particle. You can tell that a property can use curves
because there is a downward-facing arrow next to the value. The options you see
are Constant, Curve, Random Between Two Constants, and Random Between Two
Curves. In this section, the value is always Constant. Later in this hour, you'll get a
chance to explore the Curves Editor in detail.

Default Module
The default module is simply labeled Particle System. This module contains all the
specific information that every particle system requires. Table 16.1 describes the
properties of the default module.

TABLE 16.1 Default Module Properties

Property Description

Duration Specifies how long, in seconds, the particle system runs.

Looping Determines whether the particle system starts over when the Duration
value has been reached.

Prewarm Specifies whether the particle system should start as if it had already
emitted particles from a previous cycle.

Start Delay Specifies how long, in seconds, the system waits before emitting
particles.

Start
Lifetime

Specifies how long, in seconds, each particle lives.

Start Speed Determines the initial speed of particles.

Start Size Specifies the initial size of a particle. If you check the property 3D Start
Size, you can provide different size values along the three axes.
Otherwise, it is one size fits all.

Start
Rotation

Specifies the initial rotation of particles. If you check the property 3D
Start Rotation, you can specify a rotation value about the three axes.
Otherwise, only one value is used.

Randomize
Rotation

Causes some particles to rotate in the opposite direction.

Start Color Specifies the color of emitted particles.
Gravity
Modifier

Specifies how much of the world’s gravity is applied to the particles.

Simulation
Space

Determines whether the coordinate and axes values are based on the
world coordinate system or the local coordinate system of a parent game
object.

Simulation
Speed

Allows fine-tuning of the speed for an entire particle system.

Delta Time Determines whether the timing of a particle system is based on scaled
time or unscaled time.

Scaling
Mode

Determines whether the scale is based on the game object, the object’s
parent, or the shape of the emitter.

Play on
Wake

Determines whether the particle system begins emitting particles
immediately when created.

Emitter
Velocity

Allows you to choose whether velocity is calculated from the object’s
transform or its rigidbody (if it has one).

Max
Particles

Specifies the total number of particles that can exist for a system at a
time. If this number is reached, the system ceases emitting until some
particles die.

Auto
Random
Seed

Determines whether the particle system will look different each time it
is played.

Stop
Action

Allows you to specify what happens when the particle system finishes.
For instance, you could disable or destroy the game object or request a
script callback to occur.

Emission Module
The Emission module is used to determine the rate at which particles are emitted.
Using this module, you can dictate whether particles stream at a constant rate, in
bursts, or somewhere in between. Table 16.2 describes the Emission module
properties.

TABLE 16.2 Emission Module Properties

Property Description

Rate
over
Time

Specifies the number of particles emitted over time.

Rate
over
Distance

Specifies the number of particles emitted over distance.

Bursts Specifies bursts of particles at specific time intervals. You can create a
burst by clicking the plus sign (+) and remove a burst by clicking the
minus sign (−) (see Figure 16.4).

FIGURE 16.4
The Emission module.

Shape Module
Just as its name implies, the Shape module determines the shape formed by the emitted
particles. The shape options are Sphere, Hemisphere, Cone, Donut, Box, Mesh, Mesh
Renderer, Skinned Mesh Renderer, Circle, and Edge (whew!). In addition, each shape
has a set of properties used to define it, such as radius for cones and spheres. These
properties are fairly self-explanatory, so they are not covered here.

Velocity over Lifetime Module
The Velocity over Lifetime module directly animates each particle by applying an x, y,
and z axis velocity to it. Note that this is a velocity change of each particle over the
lifetime of the particle, not over the lifetime of the particle system. Table 16.3
describes the properties of the Velocity over Lifetime module.

TABLE 16.3 Velocity over Lifetime Module Properties

Property Description

XYZ Specifies the velocity applied to each particle. This can be a constant,
curve, or random number between a constant or curve.

Space Dictates whether the velocity is added based on local or world space.
Speed
Modifier

Allows you to scale the individual velocities all at once.

Limit Velocity over Lifetime Module
This long-named module can be used to dampen or clamp the velocity of a particle.

Basically, it prevents, or slows down, particles that exceed a threshold speed on one or
all of the axes. Table 16.4 describes the properties for the Limit Velocity over Lifetime
module.

TABLE 16.4 Limit Velocity over Lifetime Module Properties

Property Description

Separate
Axis

If unchecked, uses the same value for each axis. If checked, uses speed
properties for each axis as well as a property for local or world space.

Speed Specifies the threshold speed for each or all axes.

Dampen Specifies the value, between 0 and 1, by which a particle will be slowed if
it exceeds the threshold, as determined by the Speed property. A value of
0 does not slow a particle at all, but a value of 1 slows the particle 100%.

Drag Specifies the amount of linear drag to apply to particles.

Multiply
by Size

Determines whether larger particles will be slowed more.

Multiply
by
Velocity

Determines whether faster particles will be slowed more.

Inherit Velocity Module
The Inherit Velocity Module is very simple and determines how much, if any, of the
velocity of the emitter should be applied to the particle. The first property, Mode,
specifies if only the initial velocity is applied or if the particle should continue
receiving the velocity of the emitter. Finally, the Multiplier property determines the
proportion of velocity to apply.

Force over Lifetime Module
The Force over Lifetime module is similar to the Velocity over Lifetime module. The
difference is that this module applies a force, not a velocity, to each particle. This
means the particle will continue to accelerate in the specified direction. This module
also allows you to randomize the force each frame, as opposed to all up front.

Color over Lifetime Module
The Color over Lifetime module allows you to change the color of a particle as time
passes. This is useful for creating effects like sparks, which start out bright orange and
end a dark red before disappearing. To use this module, you must specify a gradient of
color. You can also specify two gradients and have Unity randomly pick a color
between them. Gradients can be edited using Unity’s Gradient Editor (see Figure

16.5).

FIGURE 16.5
The Gradient Editor.

Note that the color of the gradient is multiplied by the Start Color property of the
default module. Therefore, if your start color is black, the Color over Lifetime module
will have no effect.

Color by Speed Module
The Color by Speed module allows you to change the color of a particle based on its
speed. Table 16.5 describes the properties of the Color by Speed module.

TABLE 16.5 Color by Speed Module Properties

Property Description

Color Specifies a gradient (or two gradients for random colors) that is used to
dictate the color of the particle.

Speed
Range

Specifies the minimum and maximum speed values that are mapped to the
color gradient. Particles going the minimum speed are mapped to the left
side of the gradient, and colors at the maximum speed (or beyond) are
mapped to the right side of the gradient.

Size over Lifetime Module
The Size over Lifetime module allows you to specify a change in the size of a particle.

The size value must be a curve, and it dictates whether the particle grows or shrinks as
time elapses.

Size by Speed Module
Much like the Color by Speed module, the Size by Speed module changes the size of a
particle based on its speed between minimum and maximum values.

Rotation over Lifetime Module
The Rotation over Lifetime module allows you to specify a rotation over the life of a
particle. Note that the rotation is of the particle itself, not a curve in the world
coordinate system. This means that if your particle is a plain circle, you will not be
able to see the rotation. If the particle has some detail, however, you will notice it spin.
The values for the rotation can be given as a constant, curve, or random number.

Rotation by Speed Module
The Rotation by Speed module is the same as the Rotation over Lifetime module
except that it changes values based on the speed of the particle. Rotation changes
based on minimum and maximum speed values.

External Forces Module
The External Forces module allows you to apply a multiplier to any forces that exist
outside the particle system. A good example of this is any wind forces that exist in a
scene. The Multiplier property scales the forces either up or down, depending on its
value.

Noise Module
The Noise module is a relatively new module for Unity’s particle system. This module
allows you to apply some randomization to the movement of a particle (think lightning
bolts, for example). It accomplishes this by generating a Perlin noise image to use as a
lookup table. You can see the noise being used in the Preview window of the module.
Table 16.6 lists the properties of the Noise module.

TABLE 16.6 Noise Module Properties

Property Description

Separate Axes Dictates whether the noise will be applied equally to all axes or
whether different values will be derived for each.

Strength Defines how strong the noise effect is on a particle over its lifetime.
Higher values make particles move faster and farther.

Frequency Specifies how often particles change their direction of travel. Low
values create soft, smooth noise, and high values create rapidly
changing noise.

Scroll Speed Causes the noise field to move over time to cause more
unpredictable and erratic particle movement.

Damping Determines whether strength is proportional to frequency.

Octaves Determines how many overlapping layers of noise are applied.
Higher numbers give more rich and interesting noise but at the cost
of performance.

Octave
Multiplier

Reduces the strength of each additional noise layer.

Octave Scale Adjusts the frequency for each additional noise layer.

Quality Allows you to adjust the quality of the noise to regain some
performance.

Remap and
Remap Curve

Allows you to remap the final value of the noise into something
else. You can use a curve to specify which noise values should be
translated into other values.

Position,
Rotation, and
Size Amount

Control how much the noise affects position, rotation, and scale of a
particle.

Collision Module
The Collision module allows you to set up collisions for particles. This is useful for all
sorts of collision effects, like fire rolling off a wall or rain hitting the ground. You can
set the collision to work with predetermined planes (Planes mode is the most efficient)
or with objects in the scene (World mode slows performance). The Collision module
has some common properties and some unique properties, depending on the collision
type chosen. Table 16.7 describes the common properties of the Collision module.
Tables 16.8 and 16.9 describe the properties of Planes mode and World mode,
respectively.

TABLE 16.7 Common Collision Module Properties

Property Description

Planes and
World

Dictates the type of collision used. Planes collide off predetermined
planes. World mode collides off any object in a scene.

Dampen Determines the amount a particle is slowed when it collides. Values
range from 0 to 1.

Bounce Determines what fraction of the component of velocity is kept. Unlike

Dampen, this only affects the axes the particle bounces on. Values range
between 0 and 1.

Lifetime
Loss

Determines how much life of a particle is lost on collision. Values range
from 0 to 1.

Min Kill
Speed

Specifies the minimum speed of a particle before it is killed by collision.

Max Kill
Speed

Specifies the speed above which particles that collide will be removed
from the system.

Radius
Scale

Adjusts the radius of the particle collision spheres so it more closely fits
the visual edges of the particle graphic.

Send
Collision
Messages

Determines whether collision messages are sent to objects that collide
with particles.

Visualize
Bounds

Renders the collision bounds of each particle as a wireframe shape in
the Scene view.

TABLE 16.8 Planes Mode Properties

Property Description

Planes Determines where the particles can collide. The y axis of the
transforms provided determines the rotation of the plane.

Visualization Determines how the planes are drawn in the Scene view. They can
either be solid or grid.

Scale Plane Resizes the visualization of the planes.

TABLE 16.9 World Mode Properties

Property Description

Collision
Mode

Specifies whether to use 2D or 3D.

Collision
Quality

Indicates the quality of the world collision. The values are High,
Medium, and Low. Obviously, High is the most CPU intensive and
most accurate, and Low is the least.

Collides
With

Determines which layers the particles collide with. This is set to
Everything by default.

Max
Collision
Shapes

Specifies the number of shapes that can be considered for collision.
Excess shapes are ignored, and terrains take priority.

Enabled
Dynamic
Colliders

Determines whether particles can collide with non-static (non-
kinematic) colliders.

Collider
Force and
Multiply
Options

Allow particles to apply force to objects they collide with. This allows
particles to push objects. Additional check boxes allow more force to
be applied based on angle of collision, speed of particle, and size of
particle.

 TRY IT YOURSELF

Making Particles Collide
In this exercise, you’ll set up collision with a particle system. This exercise uses
both Planes and World collision modes. Follow these steps:

1. Create a new project or scene. Add a sphere to the scene and place it at (0, 5,
0) with a scale of (3, 3, 3). Give the sphere a Rigidbody component.

2. Add a particle system to the scene and place it at (0, 0, 0). Under the
Emission module in the Inspector, set Rate over Time to 100.

3. Enable the Collision module by clicking the circle next to its name. Set
Type to World and set Collider Force to 20 (see Figure 16.6). Notice how
the particles are already bouncing off the sphere.

FIGURE 16.6
Adding a plane transform.

4. Enter Play mode and notice how the sphere is buoyed by the particles.

5. Experiment with the various emission, shape, and collision settings. See
how long you can keep the sphere in the air.

TIP

Emitter Versus Particle Settings
Some modules modify the emitter, while others modify the particles. You may
wonder why there is a Color property and also a Color over Lifetime property. One
controls the color over the life of the emitter, while the other makes particles
change color over their life.

Triggers Module
The Triggers module “triggers” a response to a particle entering a collider volume.
You can respond to the event of a particle being inside a volume, outside a volume,
entering a volume, and exiting a volume. When any of these happens, you can ignore
the event, destroy the particle, or call a method in some code and define custom
behavior.

Sub Emitter Module
The Sub Emitter module is an incredibly powerful module that enables you to spawn a
new particle system at certain events for each particle of the current system. You can
create a new particle system every time a particle is created, dies, or collides. In doing
this, you can generate complex and intricate effects, such as fireworks. This module
has three properties: Birth, Death, and Collision. Each of these properties holds zero or
more particle systems to be created on the respective events.

Texture Sheet Module
The Texture Sheet module allows you to change the texture coordinates used for a
particle over the life of the particle. In essence, this means you can put several textures
for a particle in a single image and then switch between them during the life of a
particle (as you did with the sprite animation in Hour 15, “Game 3: Captain Blaster”).
Table 16.10 describes the properties of the Texture Sheet module.

TABLE 16.10 Texture Sheet Module Properties

Property Description

Mode Determines whether you will use the tradition texture sheet method or
provide individual sprite to cycle through.

Tiles Specifies the number of tiles the texture is divided into in the x
(horizontal) and y (vertical) directions.

Animation Determines whether the whole image contains textures for the particle
or whether only a single row does.

Cycles Specifies the speed of the animation.
Flip U and
Flip V

Determine whether some of the particles will be flipped horizontally or
vertically.

Lights Module
The Lights module allows a portion of the particles to also contain a point light. This
allows the particle systems to add illumination to a scene (think of a torch effect, for
example). Most of the properties for this module are self-explanatory, but a very
important one is the Ratio property. A value of 0 means that no particles will have a
light, and a value of 1 means that all will have a light. It is important to note that
adding lights to too many particles will greatly slow down your scene, so use this
module sparingly.

Trails Module
The Trails module allows particles to leave a trail behind them. Using the module is a
great way to create streaked effects, such as fireworks or lightning bolts. Almost all
properties of this module have been covered in other modules or are self-explanatory.
The only property that needs to be covered here is the Minimum Vertex Distance
property. This property determines how far a particle needs to travel before its trail
gets a new vertex. Lower numbers make for smoother trails but are also less efficient.

Custom Data Module
The Custom Data module is really beyond the scope of this book because it performs a
very technical and very powerful function. Essentially, this module allows you to pass
data from the particle system into a custom shader you’ve written to utilize that data.

Renderer Module
The Renderer module dictates how the particles are actually drawn. It is here that you
can specify the texture used for the particles and their other drawing properties. Table
16.11 describes some of the properties of the Renderer module.

TABLE 16.11 Renderer Module Properties

Property Description

Render
Mode

Determines how the particles are actually drawn. The modes are
Billboard, Stretched Billboard, Horizontal Billboard, Vertical Billboard,
and Mesh. All the billboard modes cause the particles to align with either
the camera or two out of three axes. The Mesh mode causes the particles
to be drawn in 3D, as determined by a mesh.

Normal
Direction

Dictates how much the particles face the camera. A value of 1 causes the
particles to look directly at the camera.

Material
and Trail
Material

Specify the material used to draw the particle and the particle’s trail,
respectively.

Sort Mode Specifies the order in which particles are drawn. Can be None, By
Distance, Youngest First, or Oldest First.

Sorting
Fudge

Determines the order in which the particle system is drawn. The lower
the value, the more likely the system is to be drawn on top of other
particles.

Min
Particle
Size and
Max
Particle
Size

Specify the smallest or largest particle size (regardless of other settings),
expressed as a fraction of the viewport size. Note that this setting is only
applied when Rendering Mode is set to Billboard.

Render
Alignment

Determines whether particles are aligned with the camera, the world,
their own transform, or the direct position of the camera (useful for VR).

Pivot Defines a custom pivot point for particles.

Masking Determines whether particles interact with a 2D mask.

Custom
Vertex
Stream

In conjunction with the Custom Data module, determines which particle
system properties are passed into custom vertex shaders.

Cast
Shadows

Determines whether particles cast shadows.

Receive
Shadows

Determines whether particles receive shadows.

Motion
Vectors

Determines whether particles use motion vectors for rendering. Leave
the default setting for now.

Sorting
Layer and
Order in
Layer

Allow particles to be sorted using the sprite sorting layer system.

Light and
Reflection
Probes

Allow particles to work with light and reflection probes (if they exist).

The Curves Editor

Several values in the various modules listed previously can be set as Constant or
Curve. The Constant option is fairly self-explanatory: You give it a value, and it is that
value. What if you want that value to change over a period of time, though? That is
where the curve system comes in very handy. This feature gives you a very fine level
of control over how a value behaves. You can see the Curves Editor at the bottom of
the Inspector view (see Figure 16.7). You may need to drag it up by the horizontal
handle.

FIGURE 16.7
The Curves Editor in the Inspector.

The title of the curve is whatever value you are determining. In Figure 16.7, the value
is for the force applied along the x axis in the Force over Lifetime module. The range
dictates the minimum and maximum values available. This can be changed to allow
for a greater or lesser range. The curve is the values themselves over a given course of
time, and the presets are generic shapes that you can give to the curve.
The curve is movable at any of the key points. These key points are show as visible
points along the curve. By default, there are only two key points: one at the beginning
and one at the end. You can add a new key point anywhere on the curve by right-
clicking it and choosing Add Key Point or by double-clicking the curve.
You can get an even larger Curves Editor by clicking the Open Editor button at the
top right of the Particle System component or by right-clicking the title bar of the
Curves Editor.

 TRY IT YOURSELF

Using the Curves Editor
To get familiar with the Curves Editor, in this exercise, you’ll change the size of
the particles emitted over the duration of one cycle of the particle system.
Follow these steps:

1. Create a new project or scene. Add a particle system and position it at (0, 0,
0).

2. Click the drop-down arrow next to the Start Size property and choose
Curve.

3. Change the range of the curve from 1.0 to 2.0 by changing the value in the
top left of the Curves Editor.

4. Right-click the curve at about the midpoint and add a key. Now drag the
start and end points of the curve down to 0 (see Figure 16.8). Notice how the
particles emitted change in size over the 5-second cycle of the particle
system.

FIGURE 16.8
Start Size curve settings.

Summary
In this hour, you have learned the basics of particles and particle systems in Unity.
You have also learned about the many modules that make up the Unity particle system.
You wrapped up the hour by looking at the functionality of the Curves Editor.

Q&A

Q. Are particle systems inefficient?
A. They can be, depending on the settings you give them. A good rule of thumb is

to use a particle system only if it provides some value to you. Particle systems
can be great visually, but don’t overdo it.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. What is the term for a 2D image that always faces the camera?
2. How do you open a larger particle effect editor window?
3. Which module controls how a particle is drawn?
4. True or False: The Curves Editor is used for creating curves that change values

over time.

Answers
1. Billboard
2. Click the Open Editor button at the top of the Particle System component in the

Inspector.
3. Renderer module
4. True

Exercise
In this exercise, you’ll experiment with some exciting particle effects provided as
standard packages with Unity. This exercise is a chance both to play around with
existing effects and to create your own. There is no correct solution for you to look at.
Just follow the steps here and use your imagination:

1. Import the particle effects package by selecting Assets > Import Package >
ParticleSystems. Be sure to leave all assets checked and click Import.

2. Navigate to Assets\Standard Assets\ParticleSystems\Prefabs. Click and drag the
FireComplex and Smoke prefabs into the Hierarchy view. Experiment with the
positioning and settings of these effects. Click Play to see the effects.

3. Continue experimenting with the rest of the provided particle effects. (Be sure to
check out the Explosion and Fireworks effects at least.)

4. Now that you have seen what is possible, see what you can create yourself. Try
out the various modules and try to come up with your own custom effects.

HOUR 17
Animations

What You’ll Learn in This Hour:
 The requirements for animation
 The different types of animations
 How to create animations in Unity

In this hour, you’ll learn about animations in Unity. You’ll start by learning exactly
what animations are and what is required for them to work. After that, you’ll look at
the different types of animations. From there, you’ll learn how to create your own
custom animations with Unity’s animation tools.

Animation Basics
Animations are premade sets of visual motions. In a 2D game, an animation involves
several sequential images that can be flipped through very quickly to give the
appearance of movement (much like an old-fashioned flip book). Animation in a 3D
world is much different. In 3D games, you use models to represent game entities. You
cannot simply switch between models to give the illusion of motion. Instead, you have
to actually move the parts of the model. Doing so requires both a rig and an animation.
Furthermore, animations can also be thought of as “automations”; that is, you can use
animations to automate object changes such as the size of colliders, the value of script
variables, or even the color of materials.

The Rig
Achieving complex animated actions, such as walking, without a rig is impossible (or
impossibly difficult). Without a rig, the computer has no way of knowing which parts
of a model are supposed to move and how they are supposed to move. So, what
exactly is a rig? Much like a human skeleton (see Figure 17.1), a rig dictates the parts
of a model that are rigid, which are often called bones. It also dictates which parts can
bend; these bendable parts are called joints.

FIGURE 17.1
The skeleton as a rig.

The bones and joints work together to define a physical structure for a model. It is this
structure that is used to actually animate the model. It is worth noting that 2D
animations, simple animations, and animations on simple objects do not require any
particular or complex rig.

The Animation
Once a model has a rig (or not, in the case of simple animations), it can be given an
animation. On a technical level, an animation is just a series of instructions for a
property or a rig. These instructions can be played just like a movie. They can even be
paused, stepped through, or reversed. Furthermore, with a proper rig, changing the
action of a model is as simple as changing the animation. The best part of all is that if
you have two completely different models that have the same rigging (or different but
similar rigging, as you will discover in Hour 18, “Animators”), you can apply the same
animations to each of them identically. Thus, an orc, a human, a giant, and a werewolf
can all perform exactly the same dance.

NOTE

3D Artists Wanted
The truth about animation is that most of the work is done outside programs like
Unity. Generally speaking, modeling, texturing, rigging, and animations are all
created by professionals, known as 3D artists, in programs such as Blender, Maya,
and 3ds Max. Creating these assets requires a significant amount of skill and
practice. Therefore, their creation is not covered in this text. Instead, this book
shows you how to build interactive experiences in Unity by putting together
already made assets. Remember that there is more to making a game than simply
putting together pieces. You may make a game, but artists make a game look good!

Animation Types
So far you’ve read about things like animations, rigs, and automations. These terms
may seem a bit nonsensical at this point, and you may be wondering how they relate
and what exactly you need in order to use animations in a game. This section looks at
the various types of animation and helps you understand how they work so that you
can begin making them.

2D Animations
In a sense, 2D animations are the simplest type of animations. As explained earlier in
this hour, a 2D animation functions very much like a flip book (or an animated cartoon
or even a film-based movies). The idea behind a 2D animation is that images are
presented in sequential order at a very fast pace, tricking the eye into seeing motion.
Setting up 2D animations within Unity is very easy, but modifying them is more
difficult. The reason is that 2D animations required art assets (the images being
shown) in order to work. Any changes to an animation require you (or an artist) to
make changes to the images themselves in other software, such as Photoshop or Gimp.
It isn’t possible to make changes to the images themselves within Unity.

 TRY IT YOURSELF

Slicing a Sprite Sheet for Animation
In this exercise, you will prepare a sprite sheet for animation. The project
created in this exercise will be used later, so be sure to save it. Follow these
steps:

1. Create a new 2D project.

2. Import the RobotBoyRunSprite.png image from the 2D assets package.
(While this image has already been prepared for animation—it is an
animated character in the 2D assets package—you examine it in this exercise

as a review.) You can do this by selecting Assets > Import Package > 2D
and importing only the RobotBoyRunSprite.png asset (see Figure 17.2).
Alternatively, you can find the RobotBoyRunSprite.png asset in the book
files for Hour 17.

FIGURE 17.2
Importing a sprite sheet.

3. Select the newly imported RobotBoyRunSprite.png file in the Project view.

4. In the Inspector view, ensure that Sprite Mode is set to Multiple and then
click Sprite Editor. In the upper-left corner, click Slice and then choose
Grid by Cell Size as the type. Notice the grid sizes and the resulting sprite
slices (see Figure 17.3).

FIGURE 17.3
Slicing the sprite sheet.

5. Close the Sprite Editor window.

Now that you have a series of sprites, you can turn them into an animation.

NOTE

Reinventing the Wheel
This hour you are using assets from Unity’s 2D asset package. You may have
noticed that these assets are already animated, which means you are doing work
that has already been done. This way, you can see the work that originally went
into animating these characters. Better yet, you can explore the completed assets in
the 2D assets package to figure out how they are put together and to see how more
complex examples are achieved.

Creating an Animation
You’ve prepared your assets, so you are now ready to turn them into an animation.
There is a simple way to do this, and there is also a complicated way to accomplish
this. The complicated way involves creating an animation asset, specifying sprite
renderer properties, adding key frames, and providing values. Because you haven’t
learned how to do all that yet (although you will in the next section), let’s go with the
simple route. Unity has a strong automated workflow, and you will tap into that to
create your animation.

 TRY IT YOURSELF

Creating an Animation
Use the project you created in the Try It Yourself “Slicing a Sprite Sheet for
Animation” and follow these steps to make an animation:

1. Open the project you created in the Try It Yourself “Slicing a Sprite Sheet
for Animation.”

2. Locate the RobotBoyRunSprite asset in the Project view. Expand the sprite
drawer (by clicking the small arrow on the right side of the sprite) to see all
the subsprites.

3. Select all the sprites from that sprite sheet by selecting the first sprite and
then selecting the last sprite while holding the Shift key. Then drag all the
frames into the Scene view (or Hierarchy view; either works) and let go (see
Figure 17.4).

FIGURE 17.4
Creating the animation.

4. If you are prompted with a Save As dialog, choose a name and location for
your new animation. If you aren’t prompted, two new assets are created in
the same folder as the sprite sheet. Either way, Unity has now automated the
process of creating an animated sprite character in your scene. The two
assets created (the animation asset and another asset called an animator
controller) are covered in greater detail in Hour 18.

5. Run your scene, and you see the animated robot boy playing its running
sequence. In the Inspector view, you can see the Sprite property of the Sprite
Renderer component cycling through the various frames of the animation.

That’s it! 2D animations really are very easy to create.

NOTE

More Animations
You now know how to make a single 2D animation, but what if you want a series
of animations (such as walk, run, idle, jump, and so on) that all work together?
Luckily, the concepts you’ve just learned continue to work in more complex
scenarios. Getting the animations to work together, however, requires greater
understanding of Unity’s animation system. You will learn that system in great
detail in Hour 18, where you will be using imported 3D animations. Just remember
that anywhere you can use a 3D animation, you can also use any other type of
animation. Thus, the concepts you’ll learn in Hour 18 are equally applicable to 2D
and custom animations.

Animation Tools
Unity has a set of animation tools built in that you can use to create and modify
animations without leaving the editor. You already used them unknowingly when you
made a 2D animation, and now it is time to dig in and see just what you can do.

Animation Window
To begin using Unity’s animation tools, you need to open the Animation window. You
can do this by clicking Window > Animation (not Animator). This opens a new view
that you can resize and dock like any other Unity window. Generally, it is a good idea
to dock this window so you can use it and other parts of the editor without their
overlapping. Figure 17.5 shows the Animation window and its various elements.
Note that for the purpose of this figure, the 2D animated sprite from the previous
exercise is selected. See if you can identify how Unity used the sprites you dragged
into the scene to make the animation you saw when you ran your project. Table 17.1
runs through some of the most important parts of the Animation window.

FIGURE 17.5
The Animation window.

TABLE 17.1 Important Parts of the Animation Window

Component Description

Properties The list of the component properties modified by this animation.
Expanding a property allows you to see the value of that property
based on the value of the scrubber on the timeline.

Samples The number of animation frames available in one second of animation.

This is otherwise known as the framerate.

Timeline The visual representation of changes to properties over time. The
timeline allows you to specify when values change.

Key frames Special points on the timeline. A key frame allows you to specify the
desired property value at a particular point of time. Regular frames (not
shown) also contain values, but you cannot directly control them.

Add key
frame

A button that allows you to add a key frame to the timeline for the
selected property at the position of the scrubber.

Scrubber The red line, which allows you to choose the point on the timeline that
you would like to edit. (Note: If you aren’t in Record mode, the
scrubber line is white.)

Current
frame

An indicator of what frame the scrubber is currently on.

Preview A toggle that allows you to preview the animation. This is enabled
automatically if you play the animation using the play controls in the
Animation view.

Record
Mode

A toggle that puts you into and out of Record mode. In Record mode,
any changes you make to the selected object are recorded into the
animation. Use with caution!

Animation
clip drop-
down

A menu that allows you to change between the various animations
associated with the selected object as well as create new animation
clips.

Hopefully, looking at this window gives you more insight into how your 2D animation
works. Figure 17.5 shows that an animation called Robot Run was created. This
animation has a sample rate of 12 frames per second. Each frame of the animation
contains a key frame, which sets the Sprite property of the object’s Sprite Renderer to
a different image, thus causing your character to appear to change. All this (and more)
was done automatically.

Creating a New Animation
Now that you’re familiar with the animation tools, you’re ready to put them to use.
Creating animations involves placing key frames and then choosing values for them.
The values of the frames in between all the key frames are calculated for you to
smoothly transition between them—for example, to make an object move up and
down. You could easily achieve this by choosing to modify the position of the object’s
transform and adding three key frames. The first would have a “low” y axis value, the
second would be higher, and the third would be the same as the first. As a result, the
object would bounce up and down. This is all fairly conceptual, so work through the
following example to get a better feel for the process.

 TRY IT YOURSELF

Making an Object Spin
In this exercise you are going to make an object spin. You will be doing this to a
simple cube, but in reality you could apply this animation to any object you
wanted, and the result would be the same. Be sure to save the project you create
here for later use:

1. Create a new 3D project.

2. Add a cube to the scene and ensure that it is positioned at (0, 0, 0).

3. Open the Animation window (by selecting Window > Animation) and
dock it in your editor.

4. With the cube selected, you should see a Create button right in the middle of
the Animation view. Click it, and when you are prompted to save your
animation, do so and name it ObjectSpinAnim.

5. Click the Add Property button in the Animation view and then click the +
icon next to Transform > Rotation (see Figure 17.6).

FIGURE 17.6
Adding the Rotation property.

You should now have two key frames added to your animation: one at frame
0 and another at frame 60 (or “1 second”; see the following tip for more info
about the timing). If you expand the Rotation property, you can see the
properties of the individual axes. Furthermore, selecting a key frame allows
you to see and adjust the values of that key frame.

6. Move the scrubber bar over the ending key frame (by clicking and dragging
on the timeline) and then set the value of the Rotation.y property to 360 (see
Figure 17.7). Even though the starting value of 0 and ending value of 360 are
technically the same, doing this causes the cube to rotate. Play your scene to
see the animation.

FIGURE 17.7
Adding the Rotation.y value.

7. Save your scene because you will be using it later.

TIP

Animation Timing
The values on the timeline might seem a bit odd at first glance. In fact, reading the
timeline helps you understand the sample rate of the given animation clip. Based on
a default sample rate of 60 frames per second, the timeline would count frames 0 to
59 and then, instead of frame 60, it has 1:00 (for 1 second). Therefore, a time of
1:30 would mean 1 second and 30 frames. This is easy when you have a 60-frames-
per-second animation, but what happens with a 12-frames-per-second animation?
Then the counting would be “1, 2, 3,…11, 12, one second.” To put it another way,
you could see “0:10, 0:11, 1:00, 1:01, 1:02,…1:10, 1:11, 2:00,…” The most
important thing to take away from this is that the number preceding the colon is the
seconds, and the number following it is the frames.

TIP

Moving the Timeline
If you would like to zoom out or pan into the timeline to see more frames or look at
different frames, you can do so easily. The window uses the same navigation style
as a Scene view in 2D mode. That is, scrolling the mouse wheel zooms the timeline
in and out, while holding Alt (Option on Mac) and dragging pans around.

Record Mode
Although the tools you have used so far have been very easy to use, there are even
easier ways to work with animations. An important element in the animations tool is
Record mode (refer to Figure 17.5 for its location). In Record mode, any changes you

make to an object are recorded into the animation. This can be a very powerful way to
make quick and accurate additions to an animation. It can also be very dangerous.
Consider what would happen if you forgot you were in Record mode and made a
bunch of changes to an object. Those changes would be recorded into the animation
and repeated over and over whenever it was played. It is therefore generally advisable
to always ensure that you are not in Record mode when you don’t want to use it.
This is quite a scary warning for a tool you haven’t even used yet, but don’t worry. It
really isn’t that bad (and it is super powerful to boot). With a little discipline, it is a
fantastic tool. In the worst-case scenario, if Unity records something for you that you
don’t want, you can manually delete it from the animation yourself.

 TRY IT YOURSELF

Using Record Mode
Follow these steps to make the cube you created in the Try It Yourself “Making
an Object Spin” change color while it spins:

1. Open the scene with the spinning cube from the Try It Yourself “Making an
Object Spin.” Create a new material called CubeColor and apply it to the
cube (so you can change the color).

2. Ensure that the cube is selected, and then open the Animation window. You
should see the rotation animation you previously created; if you don’t, make
sure the cube is selected.

3. Enter Record mode by clicking the Record Mode button in the Animation
window. The Rotation property in the Inspector view turns red, signifying
that the rotation values are driven by the animation. Click and drag along the
timeline to move the scrubber and position the scrubber at frame 0:00 (see
Figure 17.8).

FIGURE 17.8
Getting ready to record.

4. In the Inspector view, locate the CubeColor material on the cube and change
its Albedo setting to red. Notice that a new property and key frame have
been added to the Animation window. If you expand the new property, you
see the r, g, b, and a values of the color at that key frame (1, 0, 0, 1).

5. Move the scrubber further down the timeline and change the color in the
Inspector again. Repeat this step as many times as you’d like. If you’d like
the animation to loop smoothly, be sure that the last key frame (at position
1:00, so it synchronized with the rotation as well) is the same color as the
first key frame (see Figure 17.9).

FIGURE 17.9

Recording the color values.

6. Play your scene to see your animation run in the Game view. Note that
playing a scene brings you out of Record mode (which is handy because you
are done using it). You should now have a spinning multicolored cube in
your scene.

The Curves Editor
The last tool you are going to look at in this hour is the Curves Editor. So far, you have
been in the Dopesheet view, which is the view with the key frames listed and itemized
in a flat fashion. You may have noticed that while you drive the values of the key
frames, you don’t control the values in between. If you wondered how the values are
determined, wonder no more. Unity blends the values (in a process called
interpolation) between key frames to create smooth transition. In the Curves Editor,
you can see what that looks like. To enter the Curves Editor, simply click the button
labeled Curves at the bottom of the Animation view (see Figure 17.10).

FIGURE 17.10
The Curves Editor.

In this mode, you can toggle which values you want to see by clicking their properties
on the left. In the Curves Editor, you can see exactly how values are being transitioned
between the key frames. You can drag a key frame to change its value or even double-
click the curve to create a new key frame at the point where you clicked. If you don’t
like how Unity is generating the value in between the key frames, you can right-click a
key frame and choose Free Smooth. Unity then gives you two handles that you can
move to change how values are smoothed. Feel free to play around and see what sort
of craziness you can create with the curves.

 TRY IT YOURSELF

Using the Curves Editor
You may have noticed that the cube from the Try It Yourself “Using Record

Mode” doesn’t spin smoothly and instead has a slow start-and-stop motion. In
this exercise you will modify the animation to give the cube a smooth spinning
motion. Follow these steps:

1. Open the scene with your spinning cube from the Try It Yourself “Using
Record Mode.” In the Animation view, click the Curves button to switch to
the Curves Editor (refer to Figure 17.10).

2. Click the Rotation.y property to show its curve in the timeline. If the curve
is small or doesn’t fit in the window, simply move your mouse cursor over
the timeline and press the F key.

3. Straightening out the rotation curve will give your cube a nice smooth
animation (see Figure 17.11), so right-click the first keyframe (at time 0:00)
and select Auto. Do the same for the last keyframe.

FIGURE 17.11
Modifying the rotation curve.

4. Now that the curve is straightened out, enter Play mode to see the modified
cube animation.

Summary
In this hour you were introduced to animations in Unity. You started by looking at the
basics of animations, including rigging. From there, you learned about the various
types of animations in Unity. After that, you began creating animations, starting with
2D animations. Then you created custom animations both manually and in Record
mode.

Q&A
Q. Can animations be blended?
A. Yes, they can. You can blend animations with the Unity Mecanim system, as

discussed in Hour 18.

Q. Can any animation be applied to any model?
A. Only if they are rigged exactly the same or if the animation is a simple one that

doesn’t require a rig. Otherwise, the animations may behave very strangely or
just may not work at all.

Q. Can a model be rerigged in Unity?
A. Sort of, as you will see in Hour 18.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. The “skeleton” of a model is known as what?
2. Which animation type flips through images quickly?
3. What is the name for a frame of animation that has an explicit value?

Answers
1. Rig or rigging
2. 2D animation
3. Key frame

Exercise
This exercise is a sandbox type of exercise. Feel free to take some time and get used to
creating animations. Unity has a very powerful toolset, and it certainly pays to be
familiar with it. Try completing the following:

 Make an object fly around a scene in a large arc.
 Make an object flicker by cycling its renderer on and off.
 Change the properties of an object’s scale and material to make it appear to
morph.

HOUR 18
Animators

What You’ll Learn in This Hour:
 The basics of animators
 How to use an animator’s state machines
 How to control animations from script via parameters
 An introduction to blend trees

In this hour, you’ll take what you’ve already learned about animations and put it to use
with Unity’s Mecanim animation system and animators. You’ll start by learning about
animators and how they work. From there, you’ll look at how to rig or change the
rigging of models in Unity. After that, you’ll create an animator and configure it.
Finally, you will see how animations are blended to produce amazingly realistic
results.

NOTE

Warning: Get Your Hands Dirty!
This section is like one big Try It Yourself. Make sure you save your project in
between the practical exercises, as each builds on the one before. You will certainly
want to be in front of your computer while you read this section. The topic is best
learned by doing!

Animator Basics
All animation in Unity starts with an Animator component. In Hour 17, while you
were creating and learning about animations, you were using animators without really
knowing it. At its heart, Unity’s animation system (Mecanim) comprises three pieces:
the animation clip, the Animator controller, and the Animator component. These three
pieces all exist to make your characters come to life.
Figure 18.1, which is taken from Unity’s online documentation about the Animator

component (https://docs.unity3d.com/Manual/class-Animator.html), shows how these
parts relate to one another.

FIGURE 18.1
How the parts of a humanoid animation relate to each other.

The animation clips (see #1 in Figure 18.1) are the various motions that you either
import or create in Unity. The Animator controller (#2) contains your animations and
determines which clips should play at any given moment. Models have something
called an avatar (#3) that acts as the “translator” between the Animator controller and
the rigging of the model. You can generally ignore the avatar because it is set up and
used automatically. Finally, both the Animator controller (which you can just call the
“controller”) and the avatar are put together on the model using an Animator
component (#4). Does it seem like a lot to remember? Don’t worry. Most of this stuff
is either intuitive or automatic.
One of the best things about Unity’s animation system is that you can use it to
“retarget” an animation onto other game objects. If you animate a cube, you can also
apply that animation to a sphere. If you animate a character, you can apply the
animation to another character with the same rigging (or different rigging, as you will
soon see). This means you can, for example, have an orc and a man doing the same
happy dance together.

NOTE

Analyzing a Specific Use Case
In order to get the most out of this hour, you will work with a very specific use
case: 3D animations on a humanoid model (a very common use case to be sure).
This will allow you to learn about 3D animations, importing models and
animations, working with rigs, and using Unity’s awesome humanoid retargeting
system. Just remember that, with the exception of humanoid retargeting, everything
covered in this hour applies completely to any other type of animation. So, if you

https://docs.unity3d.com/Manual/class-Animator.html

are building a multipart 2D animation system, all the knowledge learned here still
matters.

Rigging Revisited
In order to begin building a complex animation system, you first need to ensure that
your model’s rigging is prepared. Recall from Hour 17, “Animations,” that models and
animations have to be rigged exactly the same way in order to function. This means
that it can be very difficult to get animations made for one model to work on a
different model. Therefore, animations and models are generally made specifically to
work together.
If you are using a humanoid model, though (two arms, two legs, head, and torso), you
have the ability to tap into Mecanim’s animation retargeting tools. With the Mecanim
system, humanoids can have their rigging remapped in the editor without using any 3D
modeling tools. The result is that any animation made for a humanoid model can work
with any other humanoid you have. This means animators (the people, not the Unity
asset) can produce large libraries of animations that can be applied to a large range of
models using many different rigs.

Importing a Model
For this hour, you will use Ethan, a model from the Characters standard asset pack.
This model comes with a lot of different items, and you will go through each piece to
ensure that it is configured properly. To import the model, select Assets > Import
Package > Characters. Leave everything checked and click Import.
Now go ahead and find Ethan in your Project tab under Assets\Standard
Assets\Characters \ThirdPersonCharacter\Models (see Figure 18.2).
If you click the little arrow to the right of the Ethan file, you can expand the model to
see all the constituent parts (see Figure 18.2). How these parts are structured depends
on how the model was exported from the 3D application used to make it.
These components are, from left to right, Ethan’s body with texture, the textured
glasses, the definition of the skeleton, the raw EthanBody mesh, the raw EthanGlasses
mesh, and finally a definition of Ethan’s avatar (which is used for rigging).

FIGURE 18.2
Finding the Ethan model.

NOTE

Previewing Meshes
If you click either the Ethan or the Glasses model in the tray, you should notice a
small preview window at the bottom of the Inspector. (If not, drag it up to show it.)
Here you can rotate that submodel around to take a look at it from all angles (see
the bottom of Figure 18.3).

When you’re done looking at the components, collapse the Ethan.fbx tray by clicking
the arrow to the right of the asset.

FIGURE 18.3
The model’s Inspector view.

Configuring Your Assets
Now that you have imported a model and animations (which came with the rest of the

assets), you need to configure them. The process for configuring animations is fairly
identical to configuring models.
With a model selected, you can see the import settings listed in the Inspector view. The
Model tab is home to all the settings that dictate how the model is imported into Unity.
These items can be safely ignored for the purposes of this hour. The tab you are
concerned with for now is the Rig tab. (The Animations tab is covered a little later in
this hour.)

Rig Preparation
You configure a model’s rig in the import settings, under the Rig tab in the Inspector
view. The property you are most concerned with here is Animation Type (see Figure
18.4). There are currently four types available in the drop-down: None, Legacy,
Generic, and Humanoid. Setting this property to None causes Unity to ignore this
model’s rig. Legacy is for Unity’s old animation system and shouldn’t be used.
Generic is for all nonhumanoid models (simple models, vehicles, building, animals,
and so on), and all models imported into Unity default to this animation type. Finally,
Humanoid (which is the one you will be using) is for all humanoid characters. This
setting allows Unity to retarget animations for you.
As you can see, Ethan is already set up properly as a humanoid. When you set a model
as humanoid, Unity automatically goes through the process of mapping the rig for you.
If you’d like to see how easy this is, you can simply change Animation Type to
Generic, click Apply, and then change it back (which is exactly how this model was
set up for you originally; no extra work was hidden). To see the work that Unity does
for you, you can enter the rigging tool by clicking the Configure button (see Figure
18.4).

FIGURE 18.4
The rig settings.

 TRY IT YOURSELF

Exploring How Ethan Is Rigged
In this exercise, you’ll take a look at how Ethan is rigged. This will give you a
much more practical idea of how a rigged model is assembled. Follow these
steps:

1. If you haven’t already done so, create a new project and import the character
assets from Standard Assets. Locate the Ethan.fbx asset and select it to
display its import settings in the Inspector view, as described earlier in this
hour.

2. Click Configure on the Rig tab. Doing so launches you into a new scene, so
save your old one if prompted.

3. Rearrange your interface so that you can see mainly the Hierarchy and
Inspector views. (Hour 1, “Introduction to Unity,” covers how to close and
move tabs.) You may want to save this layout. You can always go back to
Default later.

4. With the Mapping tab selected, click on various green circles (see Figure
18.5). Notice how this highlights the corresponding child of EthanSkeleton
in the Hierarchy view and puts a blue circle around the corresponding
skeleton point below the outline. Notice all the extra points of the rig in the
Hierarchy view. Those pieces aren’t important for humanoids and thus aren’t
retargeted. Don’t worry, though: They still play a part in ensuring that the
model looks correct when moving.

FIGURE 18.5
The Rigging view with the right arm selected.

5. Continue to explore other body parts by clicking Body, Head, Left Hand,
and so on. These are all joints, which can be completely retargeted for any
humanoid.

6. Click Done when you are finished. Notice that the temporary Ethan(Clone)
disappears from the Hierarchy view.

At this point, you have previewed Ethan and seen how his skeleton is arranged. He is
now ready to go!

Animation Preparation
For this hour, you could use the animations that came with Ethan, but that would be
boring and wouldn’t illustrate the flexibility of the Mecanim system. Instead, you are
going to use some other animations provided in the book files for Hour 18. Each
animation has options that control how the animation behaves that must be specifically
configured the way you want them. For example, you need to ensure that the walking
animation loops appropriately so that transitions don’t have any obvious seams. This
section walks you through preparing each animation.
Start by dragging the Animations folder from the book assets into the Unity editor.
You will be working with four animations: Idle, WalkForwardStraight,
WalkForwardTurnRight, and WalkForwardTurnLeft (though the Animations folder
only contains three files; more on that soon). Each of these animations needs to be set
up uniquely. If you look in the Animations folder, you will see that the animations are
actually .fbx files. This is because the animations themselves are located inside their
default models. Don’t worry, though: You will be able to modify and extract them
inside Unity.

Idle Animation
To set up the Idle animation, follow these steps (see Table 18.1 for an explanation of
the settings):

1. Select the Idles.fbx file in the Animations folder. In the Inspector, select the
Rig tab. Change the animation type to Humanoid and click Apply. This tells
Unity that the animation is for a humanoid.

2. When the rig is configured, click the Animations tab in the Inspector. Set the
starting frame to 128 and check the boxes next to Loop Time and Loop Pose.
In addition, check the box Bake into Pose for all the Root Transform
properties. Ensure that your settings match the ones in Figure 18.6 and then
click Apply.

3. To ensure that the animation is now properly configured, expand the Idles.fbx
file (see Figure 18.7). Be sure to remember how to access that animation. (The
model is irrelevant. It’s the animation you want.)

TABLE 18.1 Important Animation Settings

Setting Description

Loop
Time

Indicates whether the animation loops.

Root
Transform

Controls whether the animation is allowed to change an object’s rotation,
vertical position (y axis), and horizontal position (x/z plane).

Bake into
Pose

Indicates whether the animation is allowed to actually move an object. If
you check this box, the animation will not actually change the object but
will just appear to.

Offset Specifies some amount by which to modify the original position of the
animation. For instance, by modifying the offset under Root Transform
Rotation, you make small rotation changes to the model along the y axis.
This is useful for correcting any motion error in the animation.

FIGURE 18.6
The Idle animation.

FIGURE 18.7
Finding the animation clip.

NOTE

Red Light, Green Light
You might have noticed the green circles present in the animation settings (refer to
Figure 18.6). Those are nifty little tools you can use to designate whether your
animations are lined up. The fact that the circles are green means that they will loop
seamlessly. A circle that is yellow indicates that the animation comes close to
looping seamlessly, but there is a minor difference that will create a bit of a seam.
A red circle indicates that the beginning and end of the animation don’t line up at
all, and a seam will be very apparent. If you have an animation that doesn’t line up,
you can change the Start and End properties to find a segment of the animation that
does.

WalkForwardStraight Animation
To set up the WalkForwardStraight animation, follow these steps:

1. Select the WalkForward.fbx file in the Animations folder and complete the
rigging the same way you did for the Idle animation.

2. Change the clip’s currently very generic name (Take 001) to
WalkForwardStraight by clicking the name and changing it (see Figure
18.8).

3. On the Animations tab, ensure that your settings are the same as the ones
shown in Figure 18.8. You should note two things. First, Root Transform
Position (XZ) has a red circle next to it. This is good; it means that at the end of

the animation, the model is in a different x and z axis position. Because this is a
walking animation, that is the behavior you want. The other thing you should
notice is the Average Velocity indicator. You should notice a nonzero velocity
in the x axis and z axis. The z axis velocity is good because you want the
model moving forward, but the x axis velocity is a problem because it will
cause the model to drift sideways while walking. You will adjust this setting in
step 4.

FIGURE 18.8
The WalkForwardStraight animation settings.

4. To adjust the x axis velocity, check the Bake into Pose check box for both the
Root Transform Rotation and the Root Transform Position (Y) properties. Also
change Root Transform Rotation Offset so that the x axis value of Average
Velocity becomes 0.

5. Set the End frame to 244.9 and the Start frame to 215.2 (in that order) so the
animation only contains the walking frames.

6. Finally, check the Loop Time and Loop Pose check boxes.

7. Ensure that your settings match the final settings shown in Figure 18.9 and
click the Apply button.

FIGURE 18.9
The fixed WalkForwardStraight animation settings.

WalkForwardTurnRight Animation
The WalkForwardTurnRight animation allows the model to smoothly change direction
while walking forward. This one differs a little from the two you have already created
in that you need to make two animations out of a single animation recording. This
sounds trickier than it really is. Follow these steps:

1. Select the WalkForwardTurns.fbx file in the Animations folder and
complete the rigging the same way you did for the Idle animation.

2. By default, there will be a long animation with the name

_7_a_U1_M_P_WalkForwardTurnRight. Rename it by typing
WalkForwardTurnRight into the Clip Name text field and pressing the Enter
key.

3. With the WalkForwardTurnRight clip selected, set the properties to match
those shown in Figure 18.10. The shorter Start and End times will cut the clip
down and ensure that it only contains the model moving in a rightward circle.
(Be sure to preview it to see what it looks like.) After you have done this, click
Apply.

FIGURE 18.10
The WalkForwardTurnRight settings.

4. Create a WalkForwardTurnLeft animation clip by clicking the +icon in the
Clips list (see Figure 18.11). The properties for the WalkForwardTurnLeft clip
will be exactly the same as the WalkForwardTurnRight clip except that you
need to put a check in the Mirror property (see Figure 18.11). Remember to
click Apply when you’re done with the settings.

At this point, all the animations are set up and ready to go. Now all that’s left to do is
build the animator.

FIGURE 18.11
Mirroring the animation.

Creating an Animator
Animators in Unity are assets. This means they are a part of a project and exist outside
any one scene. This is nice because it allows for easy reuse over and over again. To
add an animator to your project, in Project view you simply right-click a folder and
select Create > Animator Controller (but don’t do that just yet).

 TRY IT YOURSELF

Setting Up the Scene
In this exercise, you’ll set up a scene and prepare for the rest of this hour. Be
sure to save the scene created here because you’ll need it later. Follow these
steps:

1. If you have not done so already, create a new project and complete the

model and animation preparation steps in the previous section.

2. Drag the Ethan model into your scene (from Assets\Standard
Assets\Characters \ThirdPersonCharacter\Models) and give it the position (0,
0, -5).

3. Nest the Main Camera under Ethan (by dragging the Main Camera onto the
Ethan game object in the Hierarchy view) and position the camera at (0, 1.5,
-1.5) with a rotation of (20, 0, 0).

4. In your Project view, create a new folder named Animators. Right-click the
new folder and select Create > Animator Controller. Name the animator
PlayerAnimator. With Ethan selected in the scene, drag the animator onto
the Controller property of the Animator component in the Inspector (see
Figure 18.12).

FIGURE 18.12
Adding the animator to the model.

5. Add a plane to your scene. Position the plane at (0, 0, -5) with a scale of (10,
1, 10).

6. Locate the file Checker.tga in the book assets for Hour 18 and import it into
your project. Create a new material named Checker and set Checker.tga as
the albedo for the material (see Figure 18.13).

FIGURE 18.13
Setting the tiling of the checker texture.

7. Set both the X and the Y Tiling properties to 10 and apply the material to
the plane. (The plane isn’t super useful right now, but it will become
important later in this hour.)

The Animator View
Double-clicking an animator brings up the Animator view (which you can also open
by selecting Window > Animator). This view functions like a flow graph, allowing
you to visually create animation paths and blending. This is the real power of the
Mecanim system.
Figure 18.14 shows the basic Animator view. You can move around the Animator
view by dragging with the middle mouse button held down, and you can zoom with
the scroll wheel. This new animator is very plain: It has only a base layer, no
parameters, Entry and Exit nodes, and an Any State node. (These components are
discussed in more detail later in this hour.)

FIGURE 18.14
The Animator view.

The Idle Animation
The first animation you want to apply to Ethan is the Idle animation. You completed
the long setup process earlier, and now, adding this animation is simple. You need to
locate the Idle animation clip, which is stored inside the Idles.fbx file (refer to Figure
18.7, earlier in the hour), and drag it onto the animator in the Animator view (see
Figure 18.15).

FIGURE 18.15
Applying the Idle animation.

You should now be able to run your scene and see the Ethan model looping through
the Idle animation.

TIP

Slip and Slide
When you run the scene to see the Ethan model playing the idle animation, you
may notice the model’s feet sliding on the ground. This is due to how this particular
animation was authored. In this animation, the character is determining its motion
based on its hips as opposed to its feet (causing it to rotate a little bit like a
pinwheel). You can fix this in the Animator view. Simply select the Idle animation
state, and in the Inspector view, select the Foot IK check box (see Figure 18.16).
The model now attempts to track its feet to the ground. This causes the character to
animate correctly, with its feet firmly planted. By the way, IK stands for Inverse
Kinematics; the details of such are mostly out of the scope of this text.

FIGURE 18.16
Selecting Foot IK.

Parameters
Parameters are like variables for an animator. You set them up in the Animator view
and then manipulate them with scripts. These parameters control when animations are
transitioned and blended. To create a parameter, simply click the + in the Parameters
tab in the Animator view.

 TRY IT YOURSELF

Adding Parameters
In this exercise, you’ll add two parameters. This exercise builds on the project
and scene you have been working on thus far this hour. Follow these steps:

1. Make sure you’ve completed all the steps up to this point.

2. In the Animator view, click the Parameters tab on the left and then click
the + to create a new parameter. Choose a Float parameter and name it
Speed (see Figure 18.17).

FIGURE 18.17
Adding parameters.

3. Repeat step 2 to create a float parameter named Direction.

States and Blend Trees
Your next step is to create a new state. A state is essentially a status that the model is
currently in that defines what animation is playing. You created a state earlier, when
you added the Idle animation to the Animator controller. The model Ethan will have
two states: Idle and Walking. Idle is already in place. Because the Walking state can be
any of three animations, you want to create a state that uses a blend tree, which
seamlessly blends one or more animations, based on some parameter. To create a new
state, follow these steps:

1. Right-click a blank spot in the Animator view and select Create State > From
New Blend Tree. In the Inspector view, name the new state Walking (see
Figure 18.18).

FIGURE 18.18
Creating and naming a new state.

2. Double-click the new state to expand it and select the new Blend Tree state. In
the Inspector, click the Parameter property drop-down and change it to
Direction. Then add three motions by clicking the + under the motions and
selecting Add Motion Field. Under the graph, set the minimum value to -1 and
the maximum value to 1 (see Figure 18.19).

FIGURE 18.19
Adding motion fields.

3. Drag each of the three walking animations into one of the three motion fields,
in this order: WalkForwardTurnLeft, WalkForwardStraight,
WalkForwardTurnRight (see Figure 18.20). Remember that the turning
animation clips are located under WalkForwardTurns.fbx, and the straight
walking animation is under WalkForward.fbx.

FIGURE 18.20
Changing minimum values and adding animations to a blend tree.

Your walking animation is now ready to blend, based on the Direction parameter.

Basically, you told the blend state to evaluate the parameter Direction. Based on the
value of that parameter, the blend tree will choose some percentage amount of each
animation to blend to give you the final unique animation. For instance, if Direction
equals -1, the blend tree plays 100% of the WalkForwardTurnLeft animation. If
Direction equals .5, the blend tree plays 50% of the WalkForwardStraight animation
blended with 50% of the WalkForwardTurnRight animation. You can easily see how
powerful blend trees can be! In order to get out of the expanded view, click the Base
Layer breadcrumb at the top of the Animator view (see Figure 18.21).

FIGURE 18.21
Navigating the Animator view.

Transitions
The last thing you need to do to ensure that your animator is finished is to tell the
animator how to transition between the Idle and Walking animations. You need to set
up two transitions. One of them transitions the animator from idle to walking, and the
other transitions back. To create a transition, follow these steps:

1. Right-click the Idle state and select Make Transition to create a white line
that follows your mouse. Click the Walking state to connect it to the Idle state.

2. Repeat step 1, except this time connect the Walking state to the Idle state.

3. Edit the Idle to Walking transition by clicking the white arrow on it. Add a
condition and set it to be Speed Greater than the value .1 (see Figure 18.22).
Do the same for the Walking to Idle transition, except set the condition to
Speed Less Than the value .1.

4. Uncheck the Has Exit Time box to allow the Idle animation to be interrupted
when the walk key is pressed.

FIGURE 18.22
Modifying transitions.

The animator is finished. You might notice that when you run the scene, there aren’t
any working movement animations. This is because the speed and direction parameters
are never changed. In the next section, you’ll learn how to change these through
scripting.

Scripting Animators
Now that everything has been set up with the model, the rigging, the animations, the
animator, the transitions, and the blend tree, it is finally time to make the whole thing
interactive. Luckily, the actual scripting components are simple. Most of the hard work
was already done in the editor. At this point, all you need to do is manipulate the
parameters you created in the animator to get Ethan up and running. Because the
parameters you set up were of type float, you need to call the animator method:

SetFloat (<name> , <value>);

 TRY IT YOURSELF

Adding the Final Touches
In the following steps, you will add a scripted component to the project you
have been working on during this hour to make it all work:

1. Create a new folder called Scripts and add a new script to it. Name the script
AnimationControl. Attach the script to the Ethan model in the scene. (This

step is important!)

2. Add the following code to the AnimationControl script:
Click here to view code image

Animator anim;
void Start ()
{
 // Get a reference to the animator
 anim = GetComponent<Animator> ();
}
void Update ()
{
 anim.SetFloat ("Speed", Input.GetAxis ("Vertical"));
 anim.SetFloat ("Direction", Input.GetAxis("Horizontal"));
}

3. Run the scene and notice that the animations are controlled with the vertical and
horizontal input axes. (If you’ve forgotten, the horizontal and vertical input axes
are the WASD keys and the arrow keys.)

That’s it! If you run your scene after adding this script, you might notice something
strange. Not only does Ethan animate through idle, walking, and turning, but the model
also moves. This is due to two factors.
The first factor is that the animations chosen have built-in movement to them. This
was done by the animators outside Unity. If this hadn’t been done, you would have to
program the movement yourself.
The second factor is that by default, the animator allows the animation to move the
model. This can be changed by selecting the Apply Root Motion property of the
Animator component (see Figure 18.23), but in this case it will cause some strange
effects!
The final project file is included in the book files in case you want to compare notes.

FIGURE 18.23
Root motion animator property.

Summary
You started this hour by building a very simple animation from scratch. You started
with a cube and added an Animator component. You then created an Animator
controller and linked it to the animator. Next, you created animation states and

corresponding motion clips. Finally, you learned how to make the states blend.

Q&A
Q. Can you do key frame animations on humanoids in Unity?
A. Unity doesn’t allow key frame animation on humanoids, and although you may

find workarounds on the Internet, you are better off creating humanoid
animations in a dedicated 3D package and importing them into Unity.

Q. Can an object be moved by both the animator and the physics engine?
A. Although this is possible with some care, generally you want to avoid trying to

mix the two. At least at any one time, you want to be clear on whether the
animator or the physics engine is controlling a game object.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. To what must an Animator component have a reference in order to work?
2. What color is the default animation state in the Animator tab?
3. How many motion clips (motions) can an animation state have?
4. What do you use to trigger animation transitions from script?

Answers
1. An Animator controller must be created and connected to the Animator

component. In the case of humanoid characters, an avatar is also required.
2. Orange
3. It depends; an animation state can be a single clip, a blend tree, or another state

machine.
4. Animator parameters

Exercise
A lot of information is required to produce a robust and high-quality animation system.
In this hour, you got to see one way and one group of settings to achieve this. Plenty of
other assets are available, however, and learning is paramount to success.
Your exercise for this hour is to continue studying the Mecanim system. Be sure to
start by browsing Unity’s documentation on the system. You can find it on Unity’s

website at https://docs.unity3d.com/Manual/AnimationSection.html.
You can also explore the fully animated Ethan prefab, found at Assets\Standard Assets
\Characters\ThirdPersonCharacter\Prefabs\ThirdPersonController.prefab. This prefab
has a much more complex animator than the Ethan you worked with in this hour, with
three blend trees for Airborne, Grounded, and Crouching states.

https://docs.unity3d.com/Manual/AnimationSection.html

HOUR 19
Timeline

What You’ll Learn in This Hour:
 An introduction to Timeline system
 How to add and sequence clips
 More complex Timeline use cases

In this hour, you’ll take a look at a very powerful sequencing tool in Unity: the
Timeline. You’ll begin by looking at the structure and concept of a timeline and a
director. From there you’ll explore the concept of clips and how they can be sequenced
on a timeline. Finally, you’ll finish this hour by looking at more ways you can use the
Timeline to bring sophistication and complexity to your projects.

NOTE

Its Mystery Is Exceeded Only by Its Power
Throughout this hour, you are going to be looking at the various parts of the
Timeline system in Unity. One of the things to note about the Timeline is that it is a
very capable and very complex tool. In truth, this hour only scratches the surface of
what is possible with this sequencer. The whole system is built out of simple but
modular pieces, which allows it to be used in many custom and interesting ways
(much like a certain interlocking plastic construction toy that shall not be named).
The point of this note is to tell you that if you are ever wondering, “Hmm, I wonder
if I can do this with the Timeline,” the answer is probably yes. It may not always be
easy, but it’s probably possible!

Timeline Basics
At its heart, the Timeline is a sequencing tool. This means it can be used to cause
things to happen at specific times in relation to each other. What those things are is
really up to you. In a way, a timeline is very similar to an Animator controller (see
Hour 18, “Animators,” for a refresher). An Animator controller is used to sequence

and control which animations are played on an object. The limitation, though, is that
an Animator controller can only control itself or child objects. It can’t be used, for
example, to create a cinematic where two guards talk to each other while a thief sneaks
behind them in the shadows. This is exactly the type of work that the Timeline was
intended to do. You can use it to sequence many different objects doing many different
things at many different times.

Anatomy of a Timeline
The core element of a sequenced item is called a clip. While this would indicate that
the Timeline is used for animations, the truth is that a clip can be anything from an
audio clip, to a control track, to a custom data event, or even enabling and disabling
game objects. You can even program your own clips and make them do whatever you
want.
You place clips on one or more tracks (see Figure 19.1). The tracks determine what
types of clips can be placed on them and what objects they control. In order to animate
two characters in sequence, for example, you need two animation tracks (one for each
character), with one or more animations on each.

FIGURE 19.1
The anatomy of a timeline.

Both the clips and the tracks rest on a timeline asset (pictured in Figure 19.1). This
asset can be reusable between scenes or can even have multiple instances in a single
scene. The timeline keeps track of the objects it controls through bindings. These
bindings can be set up through code, but usually you just drag the objects you want to
control onto the timeline.
Finally, the Timeline system uses a Playable Director component to control the
timeline. This component is added to a game object in a scene and determines when
the timeline plays, when it stops, and what happens when it finishes.

Creating a Timeline

As mentioned earlier in this hour, a timeline asset is the piece that all the other parts fit
into. Thus, the first step in working with the Timeline is to create a timeline asset. To
do this, right-click in the Project view and select Create > Timeline (see Figure 19.2).

FIGURE 19.2
Creating a timeline.

Once a timeline is created, it needs to be controlled by a Playable Director component,
which is added to a game object in the scene. In order to add a Playable Director
component to a game object, you can simply select it and then click Add Component
> Playables > Playable Director. Then you need to set the timeline asset as the
Playable property of the Playable Director component. An easier way to complete both
of these steps at once is to drag the timeline asset from the Project view onto the game
object in the Hierarchy view that you want to control the timeline (see Figure 19.3).

FIGURE 19.3
Adding a Playable Director component to a game object.

 TRY IT YOURSELF

Creating a Timeline Asset
Take a moment to create a timeline asset and add a Playable Director component
to a game object. Be sure to save the project and scene you create in this
exercise so that you can use it later in this hour. Follow these steps:

1. Create a new project or scene. Add a new folder named Timelines to your
project.

2. In the Timelines folder, create a new timeline by right-clicking and selecting
Create > Timeline.

3. Add a new game object to your scene (by selecting GameObject > Create
> Create Empty). Name the new object Director.

4. Drag your new timeline asset from the Project view onto the Director game
object in the Hierarchy view. (It won’t work if you try to drag it onto the
Scene view or Inspector view.)

5. Select the Director game object and ensure that a Playable Director
component appears in the Inspector view.

Working with Timelines
Creating a timeline is a simple enough process, but a timeline doesn’t really achieve
anything on its own. To use a timeline, you need to create tracks and clips that control
and sequence objects in your scene. All this work is done through the Timeline
window, which is very similar to the Animation window explored in Hour 17,
“Animations.”

The Timeline Window
In order to see and work with a timeline, you need to open the Timeline window. You
can do this by clicking Window > Timeline or simply double-clicking a timeline asset
in the Project view. This window features controls for previewing and playback, mode
controls, and a large area for working with tracks and clips (see Figure 19.4).

FIGURE 19.4
The Timeline window.

There would be little point to examining the Timeline window now, as it is rather
empty. Instead, let’s move on, and you can learn more about the Timeline window as it
becomes applicable.

TIP

Locking the Timeline Window
When working within the Timeline window, you will often be clicking on other
objects in the Scene or Project window. Doing so, however, deselects your Director
game object and causes the Timeline window to go blank. This can get very
frustrating. A better way to work with the Timeline window is to lock it (refer to
Figure 19.4). This prevents your current select from changing what the Timeline
window is focused on. Then you can choose which timeline you want to modify by
using the timeline selector in the Timeline window. Much easier!

CAUTION

Preview Mode
The Timeline window has a Preview mode (refer to Figure 19.4). When this mode
is enabled, you can see how the timeline will affect objects in your scene. This is of
paramount importance for sequencing and ensuring that everything lines up.
Luckily, working in the Timeline window automatically puts you in Preview mode.
While in Preview mode, however, some functionality is disabled. One example is
that you can’t apply any prefab changes. If you notice that something just doesn’t
look correct, try leaving Preview mode to ensure that the Timeline window isn’t

playing tricks on you.

Timeline Tracks
The tracks on a timeline determine what things can be done, what object does those
things, and what things the object does. In essence, a timeline track does a lot of work
for you. To add a track to a timeline, click the Add button in the Timeline window
(refer to Figure 19.4). Table 19.1 lists the built-in track types and describes what they
do.

TABLE 19.1 Timeline Track Types

Type Description

Track
Group

This track type doesn’t contain any functionality on its own. Instead, it
allows you to group tracks under it for easier organization.

Activation
Track

This track type allows you to activate and deactivate game objects.

Animation
Track

This track type allows you to play animations on a game object. Note
that this track type takes priority over any animations being played on
the object by an animator.

Audio
Track

This track type allows you to play and stop audio clips.

Control
Track

This track type allows you to control other playables. A playable is any
asset created with Unity’s playable system. The most common use case
for this track type is to allow one timeline to play another timeline. Thus,
you could use a timeline to sequence and control several child timelines.

Playable
Track

This is a specialized track type for controlling custom playables (that is,
playables that are custom built to extend the Timeline system).

NOTE

Even More Tracks
Table 19.1 lists the tracks that existed in Unity at the time this book was published
(obviously). The Timeline is a fairly new feature, and a lot of things are constantly
in the works to expand its capabilities. This list will continue to grow as new track
types get added in future releases. Furthermore, the Timeline is extendable. If there
is currently some missing functionality you want, you can create your own custom
tracks. Even now, many developers are creating their own custom tracks. Many of
them can be found in Unity’s Asset Store. If you are interested, a great place to
start would be Unity’s own Default Playables Library (see
https://www.assetstore.unity3d.com/en/#!/content/95266).

https://www.assetstore.unity3d.com/en/#!/content/95266

 TRY IT YOURSELF

Adding Tracks
In this exercise you’ll add tracks to the timeline asset you created earlier in this
hour. Be sure to save this scene because you will continue using it later in this
hour. Follow these steps:

1. Open the scene you created in the Try It Yourself “Creating a Timeline
Asset.” Add a cube to the scene and position it at (0, 0, 0).

2. Open the Timeline window (by selecting Window > Timeline). Select the
Director game object in the scene. You should see your timeline appear in
the Timeline window (though it doesn’t have any tracks yet).

3. Lock the Timeline window by clicking the lock icon in the upper-right
corner (refer to Figure 19.4).

4. Add an animation track by clicking the Add button and selecting
Animation Track.

5. Bind the Cube game object to this animation track by dragging the Cube
object from the Hierarchy view onto the Track Binding property in the
Timeline window (see Figure 19.5).

FIGURE 19.5
Binding a track.

6. When prompted, click Create Animator on Cube.

7. Add an audio track by clicking the Add button and selecting Audio Track.
The audio track doesn’t need to be bound to a game object in order to
function.

Timeline Clips
Once you have tracks on your timeline, you need to add clips. The way clips behave
varies slightly depending on the type of track you have, but the general functionality of
all clips is the same. To add a clip to a track, simply right-click a track and select Add
From <type of clip>. So, for example, if you were adding a clip to an audio track, the
menu would say Add from Audio Clip (see Figure 19.6). A menu pops up, allowing
you to pick the clip to add to the track. Alternatively, you can add a clip to a track by
dragging a relevant asset from the Project view onto the track in the Timeline window.

FIGURE 19.6
Adding the clip called Beep High to an audio track.

Once there is a clip on the track, you can move it around to control when it plays. You
can also resize the clip to change how long it plays. You can even use a clip’s duration
to crop or loop an animation over a period of time. Note that the exact behavior of a
clip’s duration depends on the track type.
Besides dragging clips around on a track to adjust their play settings, you can also
select a clip and then modify the settings in the Inspector view. This gives you a finer
level of control and tuning when working with clips (though it isn’t as fast as simply
clicking and dragging).

 TRY IT YOURSELF

Sequencing Clips
It’s finally time to actually get some stuff happening in your timeline! You will
be adding clips to the timeline tracks you created in the Try It Yourself “Adding
Tracks.” Be sure to save this scene again because you will continue using it later

in this hour. Follow these steps:

1. Open the scene you created in the Try It Yourself “Adding Tracks.” Locate
the book assets for Hour 19 and import two folders: Animations and Audio.

2. In the Timeline window, right-click the animation track bound to the Cube
game object and select Add from Animation Clip.

3. In the Select AnimationClip dialog that pops up, choose the newly imported
Red animation clip.

4. Repeat step 3, adding clips for Orange, Yellow, Green, Blue, Indigo, and
Violet (see Figure 19.7).

5. Right-click the audio track and select Add from Audio Clip. Select the
Beep High audio clip.

6. Duplicate the Beep High clip on the audio track six times by selecting the
clip and pressing Ctrl+D on a PC or Command+D on a Mac.

7. Move the audio clips so that the timing lines up with the changing of the
cube’s color.

FIGURE 19.7
The final timeline setup.

8. Preview the timeline by moving the scrubber or clicking the Play button in
the Timeline window. Notice that the audio isn’t also previewed. (This will
be added in a later version of Unity.) Save your scene and then play it.
Notice the cube’s color changing sequenced with the audio clips.

TIP

Fast Animations
Animation tracks work great with both imported animations and animations created
in Unity using the Animation window. If you want to quickly animate an object for
use with a timeline, however, there is an even easier way. With a game object
bound to an animation track, you can click the Record button directly on the track
itself (see Figure 19.8). This functions identically to the Record mode of the
Animation window (seen in Hour 17). The only difference is that in this case,
instead of making a new separate animation clip, the animation data is stored
directly in the timeline asset. Using this method, you can quickly produce simple
animations that add a lot of depth to your cinematics.

FIGURE 19.8
Recording within the Timeline window.

TIP

Muting and Locking
Each track in the Timeline window can be locked to prevent accidental changes.
Simply select a track and press L or right-click and select Lock. In addition, a track
can be muted so that it doesn’t play when the timeline does. To mute a track, select
it and press M or right-click and select Mute.

Going Beyond Simple Control
You have only just begun to scratch the surface of what you can do with the Timeline
system. Obviously, this system is very good for cinematics, but it can also be used to
create many types of rich behaviors. A few examples are controlling guard
movements, making a crowd look more lifelike, or deploying a complex set of screen
effects when a character takes damage.

Blending Clips on a Track
So far in this hour, you’ve looked at working with clips as individual items on a track.
That doesn’t necessarily have to be the case, though. You can actually use a timeline to
blend two different clips to get a new, combined result. Doing so simply requires that
you drag one clip onto another one. Figure 19.9 shows the result of blending the Red

and Orange clips from the Try It Yourself “Sequencing Clips.”

FIGURE 19.9
Blending clips in the Timeline window.

Blending works for more than just animation clips. You can also blend audio tracks
and many of the custom tracks being created by the Unity community. Being able to
blend clips allows for unprecedented levels of control and smooth action “tweening”
between key frames.

 TRY IT YOURSELF

Blending Clips
The following steps show you how to blend the clips you added in the Try It
Yourself “Sequencing Clips” to create a smooth color transition across the
rainbow. Be sure to save this scene again because you will continue using it later
in this hour. Follow these steps:

1. Open the scene you created in the Try It Yourself “Sequencing Clips.”
Ensure that the Timeline window is open and that the Director game object
is selected.

2. In the Timeline window, drag the Orange clip so that it halfway covers the
Red clip. In the Inspector view, the Orange clip should start on frame 30 and
end on frame 90.

3. Continue blending the color clips leftward until the timeline consists of an
almost continuous blend (see Figure 19.10).

FIGURE 19.10
Blending all color clips.

4. Shift the audio clips so that each one matches up with the beginning of a
color animation. These sound cues will help identify each color as it is
applied.

Scripting with the Timeline
For the most part, the code required to build custom playable tracks and clips is fairly
complex and beyond the scope of this text. Something simple you can do, however, is
to tell a timeline when to run instead of letting it run automatically when the scene first
begins. This enables you to trigger cinematics or in-game events.
In order to write code that works with the Timeline system, you need to tell Unity to
use the Playables library:

using UnityEngine.Playables;

Then you can create a variable of type PlayableDirector and use it to control the
timeline. The two primary methods to use are Play() and Stop():
Click here to view code image

PlayableDirector director = GetComponent<PlayableDirector>();

director.Play(); // Start a timeline
director.Stop(); // Stop a timeline

Another thing you can do is tell a director what playable to play at runtime. One
potential use case for this is to have a collection of timelines that get chosen randomly
or to determine what timeline to play depending on the results of gameplay:
Click here to view code image

public PlayableAsset newTimeline;

void SomeMethod()

{
 director.Play(newTimeline);
}

Using these simple method calls, you can provide most of the functionality you need
from the Timeline system at runtime.

 TRY IT YOURSELF

Playing Timelines with Code
In this exercise you’ll finish the example for this hour by controlling your
timeline with a script:

1. Open the scene you created in the Try It Yourself “Blending Clips.” Add a
folder named Scripts and add to the folder a script named InputControl.

2. Select the Director game object and uncheck Play on Awake on the
Playable Director component. Attach the InputControl script to the Director
game object and then modify the code to contain so that it looks as follows:

Click here to view code image

using UnityEngine;
using UnityEngine.Playables;

public class InputControl : MonoBehaviour
{
 PlayableDirector director;

 void Start()
 {
 director = GetComponent<PlayableDirector>();
 }

 void Update()
 {
 if (Input.GetButtonDown("Jump"))
 {
 if (director.state == PlayState.Paused)
 director.Play();
 else
 director.Stop();
 }
 }
}

3. Run the scene. Now whenever you press the spacebar, you toggle the
timeline on and off.

Summary

You started this hour by exploring the Timeline system in Unity. You examined how
to create timeline assets and fill them with tracks and clips. From there, you learned to
mix and blend clips, and you finished the hour with some scripting to control
timelines.

Q&A
Q. What is the difference between a timeline and a playable?
A. A timeline is a playable. It just happens to be a playable that plays playables

(which also contain playables). Get it?

Q. How many timelines can be playing in a scene?
A. You can have—and play—as many timelines as you want in a scene. Be aware,

though, that if two timelines are trying to control the same object, one of them
will take priority over the other.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. What component plays a timeline in a scene?
2. How many track types are built into Unity?
3. What is the term for telling a timeline track which game object it controls?
4. How do you blend two clips?

Answers
1. Playable Director component
2. Five (six if you count the group track)
3. This is called binding the object to the track.
4. Simply drag one clip onto the other on a track.

Exercise
This exercise is a bit of an open-ended invitation to play with the Timeline system.
Besides practicing more with the Timeline, you are encouraged to check out some of
Unity's video training on the topic (see

https://unity3d.com/learn/tutorials/s/animation). Here are some things to try in this
hour:

 Create a dynamic UI using animations.
 Create a guard patrolling pattern.
 Set up a series of complex camera animations.
 Use an activation track to cause several lights to behave like strobes or a
marquee.

https://unity3d.com/learn/tutorials/s/animation

HOUR 20
Game 4: Gauntlet Runner

What You’ll Learn in This Hour:
 How to design the game Gauntlet Runner
 How to build the Gauntlet Runner world
 How to build the Gauntlet Runner entities
 How to build the Gauntlet Runner controls
 How to further improve Gauntlet Runner

Let’s make a game! In this hour, you’ll make a 3D gauntlet-running game
appropriately titled Gauntlet Runner. You’ll start the hour with the design of the game.
From there, you’ll focus on building the world. Next, you’ll build the entities and
controls. You’ll wrap up the hour by playing the game and seeing where
improvements can be made.

TIP

Completed Project
Be sure to follow along in this hour to build the complete game project. If you get
stuck, you can find a complete copy of the game in the book assets for Hour 20.
Take a look at it if you need help or inspiration.

Design
You learned about design elements in Hour 6, “Game 1: Amazing Racer.” In this hour,
you’ll dive right into them.

The Concept
In this game, you will be playing as a cyborg running as far as possible through a
gauntlet tunnel, attempting to grab power-ups to extend your game time. You need to

avoid obstacles that will slow you down. The game ends when you run out of time.

The Rules
The rules of this game state how to play and allude to some of the properties of the
objects. The rules for Gauntlet Runner are as follows:

 The player can move left or right and “phase out” (become ghost-like). The
player cannot move in any other manner.
 A player who hits an obstacle is slowed by 50% for 1 second.
 If a player grabs a power-up, the player’s time is extended by 1.5 seconds.
 The player is bounded by the sides of the tunnel.
 The loss condition for the game is running out of time.
 There is no win condition, but the player aims to travel as far as possible.

The Requirements
The requirements for this game are simple:

 A gauntlet texture.
 A wall texture.
 A player model.
 A custom shader for when the player is phased out (as discussed later in this
hour).
 A power-up and an obstacle. These will be created in Unity.
 A game manager. This will be created in Unity.
 A power-up particle effect. This will be created in Unity.
 Interactive scripts. These will be written in Visual Studio.

In an effort to make this game more visually appealing, you will be using more assets
built by the great game development community. In this case, you will be using
textures and a player model from the Adventure sample game released by Unity
Technologies (https://www.assetstore.unity3d.com/en/#!/content/76216). You will also
be using a custom shader that was graciously provided for free by Andy Duboc
(https://github.com/andydbc/HologramShader).

The World
The world for this game will simply be three cubes configured to look like a gauntlet.
The entire setup is fairly basic; it’s the other components of the game that add
challenge and fun.

The Scene

https://www.assetstore.unity3d.com/en/#!/content/76216
https://github.com/andydbc/HologramShader

Before setting up the ground and its functionality, get your scene set up and ready to
go. To prepare the scene, do the following:

1. Create a new 3D project called Gauntlet Runner. Create a new folder called
Scenes and save your scene as Main in that folder.

2. Position the Main Camera at (0, 3, -10.7) with a rotation of (33, 0, 0).

3. In the book assets for Hour 20, locate two folders: Textures and Materials.
Drag those folders into the Project view to import them.

4. In the Materials folder, locate the material Dark Sky. This material represents a
skybox; notice that its shader type is Skybox/Procedural (see Figure 20.1).
Drag the Dark Sky material from the Project view into the Scene view to
change the sky.

FIGURE 20.1
The new Dark Sky material.

The camera for this game will be in a fixed position, hovering over the gameplay. The
rest of the world will pass underneath it.

NOTE

Meta Madness
In this section you imported three folders from the book assets. If you looked inside
those folders, you might have noticed that for each asset, there was another file
with the same name and the .meta extension. These .meta files store information
that allows assets to link to each other. If the .meta files weren't included in the
book files, the materials would still have their settings, but they wouldn't know
which textures to use. Likewise, the player model wouldn't know about its material.

The Gauntlet
The ground in this game will be scrolling gauntlet in nature; however, unlike with the
scrolling background used in Captain Blaster (see Hour 15, “Game 3: Captain
Blaster”), you will not actually be scrolling anything. This is explained in more detail

in the next section, but for now just understand that you need to create only one ground
object to make the scrolling work. The ground itself will consist of a basic cube and
two quads. To create the ground, follow these steps:

1. Add a cube to the scene. Name it Ground and position it at (0, 0, 15.5) with a
rotation of (0, 180, 0) and a scale of (10, .5, 50).

2. Add to the scene a quad named Wall and position it at (-5.25, 1.2, 15.5) with a
rotation of (0, -90, 0) and a scale of (50, 2, 1). Duplicate the Wall object and
position the new object at (5.25, 1.2, 15.5).

3. In the Materials folder you imported previously, examine the Ground and Wall
materials. The Ground material is slightly metallic with some texture tiling.
One of the built-in particle shaders gives the Wall material a glowing effect
(see Figure 20.2).

FIGURE 20.2
The gauntlet materials.

4. Drag the Ground material onto the Ground game object. Drag the Wall
material onto both Wall game objects.

That’s it! The gauntlet is fairly basic.

Scrolling the Ground
You saw in Hour 15 that you can scroll a background by creating two instances of that
background and moving them in a “leapfrog” manner. In the Gauntlet Runner game,
you are going to use an even more clever solution. Each material has a set of texture
offsets. These can be seen in the Inspector when a material is selected (right below
tiling). You need to modify those offsets at runtime via a script. If the texture is set to
repeat (which it is by default), the texture will loop around seamlessly. The result, if
done correctly, is an object that seems to scroll—without any actual movement. To
create this effect, follow the steps on the next page.

1. Create a new folder named Scripts. Create a new script called

TextureScroller. Attach the script to the ground.

2. Add the following code to the script (replacing the Start() and Update()
methods that are already there):

Click here to view code image

public float speed = .5f;

Renderer renderer;
float offset;

void Start()
{
 renderer = GetComponent<Renderer>();
}

void Update()
{
 // Increase offset based on time
 offset += Time.deltaTime * speed;
 // Keep offset between 0 and 1
 if (offset > 1)
 offset -= 1;
 // Apply the offset to the material
 renderer.material.mainTextureOffset = new Vector2(0, offset);
}

3. Run the scene and notice your gauntlet scrolling. This is an easy and efficient
way to create a scrolling 3D object.

The Entities
Now that you have a scrolling world, it is time to set up the entities: the player, the
power-ups, the obstacles, and a trigger zone. The trigger zone will be used to clean up
any items that make it past the player. You do not need to create a spawn point for this
game. Instead, you are going to explore a different way of handling it: by letting the
game control create the power-ups and obstacles.

The Power-ups
The power-ups in this game are going to be simple spheres with some effects added to
them. You will be creating a sphere, positioning it, and then making a prefab out of it.
To create the power-up, follow these steps:

1. Add a sphere to the scene. Position the sphere at (0, 1.5, 42) with a scale of (.5,
.5, .5). Add a rigidbody to the sphere and uncheck Use Gravity.

2. Create a new material named Powerup and give it a yellow color. Set Metallic
to 0 and Smoothness to 1. Apply the material to the sphere.

3. Add a point light to the sphere (by selecting Add Component > Rendering >
Light). Give the light a yellow color.

4. Add a particle system to the sphere (by selecting Component > Effects >
Particle System). If the particles have an odd purplish coloring, don’t worry.
Just see the following caution for the fix.

5. In the main particle module, set Start Lifetime to .5, set Start Speed to −5, set
Start Size to .3, and set Start Color to a light-yellow color.

6. In the Emission module, set Rate over Time to 30. In the Shape module, set
Shape to Sphere and set Radius to 1.

7. In the Renderer module, set Render Mode to Stretched Billboard and Length
Scale to 5.

8. Create a new folder called Prefabs. Rename the sphere Powerup and click
and drag it from the Hierarchy view into the Prefabs folder. Then delete the
power-up from the scene.

CAUTION

Particle Problems
Depending on your version of Unity, you may see strange colored squares instead
of particles when you add a particle system to a power-up. If you do, you need to
manually apply the Default Particle material to the Renderer module of the Particle
System component. To do that, simply click the circle selector next to the Material
property of the Renderer module and select Default-Particle from the list (see
Figure 20.3)

FIGURE 20.3
Assigning the Default-Particle material.

By setting the position of the object before putting it into the prefab, you can simply
instantiate the prefab, and it will appear at that spot. As a result, you do not need a
spawn point. Figure 20.4 illustrates the finished power-up (though the image doesn’t
really do it justice).

FIGURE 20.4
The power-up.

The Obstacles
For this game, the obstacles are represented by small glowing red cubes. The player
has the option of either avoiding them or phasing through them. To create the
obstacles, follow these steps:

1. Add a cube to the scene and name it Obstacle. Position it at (0, .4, 42) with a
scale of (1, .2, 1). Add a rigidbody to the cube and uncheck Use Gravity.

2. Add a Light component to the obstacle and give it a red color.

3. Create a new material called Obstacle and apply it to the Obstacle game
object. Make the color of the material red, check the Emission check box, and
give it a dark red emissive color (see Figure 20.5).

4. Drag the Obstacle game object into the Prefabs folder to turn it into a prefab.
Delete the Obstacle game object.

FIGURE 20.5
The obstacle and material.

The Trigger Zone
Just as in games you’ve created in earlier hours, the trigger zone in Gauntlet Runner
exists to clean up any game objects that make it past the player. To create the trigger
zone, follow these steps:

1. Add a cube to the scene. Rename the cube TriggerZone and position it at (0,
1, -20) with a scale of (10, 1, 1).

2. On the Box Collider component of the trigger zone, check the Is Trigger
check box.

The Player
The player requires a large portion of the work for this game. The player will need to
be animated and will also have a controller and use a custom shader. We have talked
about shaders before, but we haven’t yet used one that wasn’t built in to Unity. Before
we get ahead of ourselves though, let’s get the player ready:

1. In the book files for this hour, locate the Models and Animations folders and
drag them into the Project view to import them.

2. Inside the Models folder, select the Player.fbx model. As mentioned before,
this asset is provided, free to use, in Unity’s Adventure sample game.

3. Under the Rig tab, change the animation type to Humanoid. Click Apply.
You should now see a check mark next to the Configure button. (If you need a
refresher on Humanoid rigs, be sure to go back to Hour 18, “Animators.”)

4. Drag the Player model into the scene and position it at (0, .25, -8.5). Give the
Player game object the Player tag. (Reminder: An object’s tag can be found in
the top-left drop-down in the Inspector view.)

5. Add a capsule collider to the player (by selecting Add Component > Physics
> Capsule Collider). Check the Is Trigger check box. Finally, set the Center
Y value to .7, Radius to .3, and Height to 1.5.

You now need to prepare and apply the Run animation, as follows:

1. From the Animations folder, select the Runs.fbx file. In the Inspector, click
the Rig tab and change the animation type to Humanoid. Click Apply.

2. On the Animations tab, notice that there are three clips: RunRight, Run, and
RunLeft. Select Run and ensure that the properties are set as shown in Figure
20.6. (To avoid drift, it is important that the x axis value for the Average
Velocity property be 0.) Click Apply.

FIGURE 20.6
The Run animation properties.

3. Expand the asset tray on the Runs.fbx model by clicking the arrow on the right
side of the asset in the Project view. Locate the Run animation clip and drag it
onto the Player model in the scene. You’ll know you did it correctly when an
animator controller named Player appears in the folder next to Runs.fbx.

If you run the scene now, you will notice a couple animation issues. The first is that
the player runs off into the distance. Recall that you only want to give the illusion that
the player is moving—but not actually have the player move. The second issue is that
the animation is too fast, and the player’s feet slide on the ground as a result. Follow
these steps to fix these issues:

1. In order to remove the root motion and get the player to run in place, select the
Player game object in the scene. On the Animator component, uncheck Apply
Root Motion.

2. In the Project view, double-click the Player animator controller (in the
Animations folder) to open the Animator window.

3. In the Animator window, select the Run state. In the Inspector view, set Speed
to .7 and check Foot IK (see Figure 20.7). Run your scene and see how the
player runs now.

FIGURE 20.7
The Run state properties.

The player entity is ready (for now). In the following sections you will add code that
provides some interesting functionality in the game.

The Controls
It’s now time to add controls and interactivity to get this game going. Because the
positions for the power-ups and obstacles are in the prefabs already, there is no need to
create a spawn point. Therefore, almost all of the control will be placed on a game
manager object.

Trigger Zone Script
The first script you need to make is the one for the trigger zone. Remember that the
trigger zone simply destroys any objects that make their way past the player. To create
this, simply create a new script named TriggerZone and attach it to the trigger zone
game object. Place the following code in the script:
Click here to view code image

void OnTriggerEnter(Collider other)
{
 Destroy(other.gameObject);
}

The trigger script is very basic and just destroys any object that enters it.

The Game Manager Script
The game manager script is where a majority of the work takes place. To start, create
an empty game object in the scene and name it Game Manager. This will simply be a
placeholder for your scripts. Create a new script named GameManager and attach it to
the Game Manager object you just created. In the following code for the game
manager script, there is some complexity, so be sure to read each line carefully to see
what it is doing. Add the following code to the script:
Click here to view code image

public TextureScroller ground;
public float gameTime = 10;

float totalTimeElapsed = 0;
bool isGameOver = false;

void Update()
{
 if (isGameOver)
 return;

 totalTimeElapsed += Time.deltaTime;
 gameTime -= Time.deltaTime;

 if (gameTime <= 0)
 isGameOver = true;
}

public void AdjustTime(float amount)
{
 gameTime += amount;
 if (amount < 0)
 SlowWorldDown();
}

void SlowWorldDown()
{
 // Cancel any invokes to speed the world up
 // Then slow the world down for 1 second
 CancelInvoke();
 Time.timeScale = 0.5f;
 Invoke("SpeedWorldUp", 1);
}

void SpeedWorldUp()
{
 Time.timeScale = 1f;
}

// Note this is using Unity’s legacy GUI system

void OnGUI()
{
 if (!isGameOver)
 {
 Rect boxRect = new Rect(Screen.width / 2 - 50, Screen.height - 100, 100, 50);
 GUI.Box(boxRect, "Time Remaining");

 Rect labelRect = new Rect(Screen.width / 2 - 10, Screen.height - 80, 20, 40);
 GUI.Label(labelRect, ((int)gameTime).ToString());
 }
 else
 {
 Rect boxRect = new Rect(Screen.width / 2 - 60, Screen.height / 2 - 100, 120, 50);
 GUI.Box(boxRect, "Game Over");

 Rect labelRect = new Rect(Screen.width / 2 - 55, Screen.height / 2 - 80, 90, 40);
 GUI.Label(labelRect, "Total Time: " +(int)totalTimeElapsed);

 Time.timeScale = 0;
 }
}

NOTE

Old UI System
Note that, like Amazing Racer (which you created In Chapter 6, “Game 1: Amazing
Racer”), the Gauntlet Runner game uses Unity’s old GUI system. While you
wouldn’t typically use this GUI for an actual game, it is used here to save time and
prevent this hour from being way too long. Don’t worry, though: You’ll get a
chance to add the new UI yourself as part of the exercise at the end of this hour.

Remember that one of the premises of this game is that everything slows down when
the player hits an obstacle. You make this happen by changing the
Time.timeScale for the entire game. The remaining variables maintain the game
timing and state.
The Update() method keeps track of time. It adds the time since the last frame
(Time.deltaTime) to the totalTimeElapsed variable. It also checks whether
the game is over, which happens when the time remaining reaches 0. If the game is
over, it sets the isGameOver flag.
The SlowWorldDown() and SpeedWorldUp() methods work in conjunction
with one another. Whenever a player hits an obstacle, the SlowWorldDown()
method is called. This method basically slows down time. It then calls the Invoke()
method, which basically says, “Call the method written here in x seconds,” where the
method called is the one named in the quotes and the number of seconds is the seconds
value. You might have noticed the call to CancelInvoke() at the beginning of the
SlowWorldDown() method. This basically cancels any SpeedWorldUp()

methods waiting to be called because the player hit another obstacle. In the previous
code, after 1 second, the SpeedWorldUp() method is called. This method speeds
everything back up so that play can resume the game, as normal.
The AdjustTime() method is called whenever the player hits a power-up or an
obstacle. This method adjusts the amount of time remaining. If that amount is negative
(an obstacle), the method calls SlowWorldDown().
Finally, the OnGUI method draws the remaining time to the scene while the game is
running, and it shows the total time the game lasted after it ends.

The Player Script
The Player script has two responsibilities: Manage the player movement and collision
controls, and manage the phase effect. Create a new script called Player and attach it
to the Player object in the scene. Add the following code to the script:
Click here to view code image

[Header("References")]
public GameManager manager;
public Material normalMat;
public Material phasedMat;

[Header("Gameplay")]
public float bounds = 3f;
public float strafeSpeed = 4f;
public float phaseCooldown = 2f;

Renderer mesh;
Collider collision;
bool canPhase = true;

void Start()
{
 mesh = GetComponentInChildren<SkinnedMeshRenderer>();
 collision = GetComponent<Collider>();
}

void Update()
{
 float xMove = Input.GetAxis("Horizontal") * Time.deltaTime * strafeSpeed;

 Vector3 position = transform.position;
 position.x += xMove;
 position.x = Mathf.Clamp(position.x, -bounds, bounds);
 transform.position = position;

 if (Input.GetButtonDown("Jump") && canPhase)
 {
 canPhase = false;

 mesh.material = phasedMat;
 collision.enabled = false;

 Invoke("PhaseIn", phaseCooldown);
 }
}

void PhaseIn()
{
 canPhase = true;
 mesh.material = normalMat;
 collision.enabled = true;
}

To start things off, this script uses something called an attribute. Attributes are special
tags that modify code. As you can see, this code uses the Header attribute, which
causes Inspector view to display the header’s string. (Check it out in the editor.)
The first three variables hold references to the game manager and two materials. When
the player phases out, the materials are swapped. The rest of the variables handle
gameplay preferences, such as the level bounds and the player’s sideways speed.
The Update() method starts by moving the player based on input. It then checks to
make sure the player isn’t out of bounds. It does this by using the Mathf.Clamp()
method. This keeps the player in the gauntlet. The Update() method then checks
whether the player is currently pressing the spacebar (which the Input Manager calls
"Jump"). If the user is pressing the spacebar, the player phases out and prepares to
phase back in after a defined cooldown. A player who is phased out has a disabled
collider so the player cannot hit obstacles or collect power-ups.

The Collidable Script
Both the power-ups and the obstacles need to move toward the player. They both also
modify the game time when the player collides with them. Therefore, you can apply
the same script to them to create this behavior. Create a script named Collidable and
add it to both the power-up and obstacle prefabs. You can do this by selecting them
both in the Inspector and clicking Add Component > Scripts > Collidable. Add the
following code:
Click here to view code image

public GameManager manager;
public float moveSpeed = 20f;
public float timeAmount = 1.5f;

void Update()
{
 transform.Translate(0, 0, -moveSpeed * Time.deltaTime);
}

void OnTriggerEnter(Collider other)
{
 if (other.tag == "Player")
 {
 manager.AdjustTime(timeAmount);
 Destroy(gameObject);
 }
}

This script is simple. There are variables for the game manager script, the movement
speed, and the time adjustment amount. Then, at each Update() method call, the
object is moved. When the object collides with something, it checks to see if it collided
with the player. If it did, it lets the game manager know and then it destroys itself.

The Spawner Script
The Spawner script is responsible for creating the objects in the scene. Because
position data is in the prefabs, you won’t need a dedicated spawner game object and
can instead just place the script on the Game Manager object. Create a new script
called Spawner and attach it to the Game Manager object. Add the following code to
the script:
Click here to view code image

public GameObject powerupPrefab;
public GameObject obstaclePrefab;
public float spawnCycle = .5f;

GameManager manager;
float elapsedTime;
bool spawnPowerup = true;

void Start()
{
 manager = GetComponent<GameManager>();
}

void Update()
{
 elapsedTime += Time.deltaTime;
 if (elapsedTime > spawnCycle)
 {
 GameObject temp;
 if (spawnPowerup)
 temp = Instantiate(powerupPrefab) as GameObject;
 else
 temp = Instantiate(obstaclePrefab) as GameObject;

 Vector3 position = temp.transform.position;
 position.x = Random.Range(-3f, 3f);

 temp.transform.position = position;

 Collidable col = temp.GetComponent<Collidable>();
 col.manager = manager;

 elapsedTime = 0;
 spawnPowerup = !spawnPowerup;
 }
}

This script contains a reference to the power-up and obstacle game objects. The next
variables control the timing and order of the object spawns. The power-ups and
obstacles will take turns spawning; therefore, there is a flag to keep track of which one
is going.
In the Update() method, the elapsed time is incremented and then checked to see if
it is time to spawn a new object. If it is time, the script checks to see which object it
should spawn. It then spawns either a power-up or an obstacle. The created object is
then moved left or right randomly. The newly spawned object is given a reference to
the game manager. Finally, the Update() method decreases the elapsed time and
flips the power-up flag so that the opposite object will be spawned next time.

Putting It All Together
Now you’re ready to work with the last part of the game. You need to link the scripts
and objects. Start by selecting the Game Manager object in the Hierarchy view. Drag
the Ground object to its corresponding property in the Game Manager Script
component (see Figure 20.8). Drag the Powerup and Obstacle prefabs onto their
corresponding properties in the Spawner (Script) component.

FIGURE 20.8
Dragging the objects to their properties.

Next, select the Player object in the Hierarchy view and drag the Game Manager
object onto the Manager property of the Player (Script) component (see Figure 20.9).
In addition, if you look in the Model folder in the Project view, you see the PhasedOut
material. Right next to it is the Hologram custom shader. Feel free to take a look at
them if you are curious, but keep in mind that understanding how to write your own
shaders is very complex and beyond the scope of this book. Don’t fret too much,
though: Unity’s very own visual shader creation tools are being released as an
“experimental” feature in Unity 2018.1! When you are ready, drag the Player material
and the PhasedOut material onto the corresponding properties on the player’s Player
(Script) component.

FIGURE 20.9
Adding the game control and materials to the player script.

Finally, select the Obstacle prefab and set the Time Amount property on the
Collidable script to -.5. That’s it! The game is now complete and playable.

Room for Improvement
As always, a game is not fully complete until it is tested and adjusted. Now it is time
for you to play through the game and see what you like and what you don’t like.
Remember to keep track of the features that you think really enhance the gameplay
experience. Also keep track of the items you feel detract from the experience. Be sure
to make notes of any ideas you have for future iterations of the game. Try to have
friends play the game as well and record their feedback about the game. All these
things will help you make the game unique and more enjoyable.

Summary
In this hour, you have made the game Gauntlet Runner. You started by laying out the

design elements of the game. From there, you built the gauntlet and got it to scroll
using a texture trick. You then built the various entities for the game. After that, you
built controls and scripts. Last but not least, you tested the game and recorded some
feedback.

Q&A
Q. The movements of the objects and the ground aren’t exactly lined up in

Gauntlet Runner. Is that normal?
A. In this case, yes. A fine level of testing and tweaking would be required to get

these to sync perfectly. This is one element you can focus on refining.

Q. Since the duration of “phasing out” is as long as the cooldown, couldn’t the
player always stay phased out?

A. Sure, I suppose. Though that would be able to happen for only about 10 seconds
since players can’t collect power-ups while phased out.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. How does the player lose the Gauntlet Runner game?
2. How does the scrolling background work?
3. How does the Gauntlet Runner game control the speed of all the objects in the

scene?

Answers
1. The player loses the game when time runs out.
2. The gauntlet stays stationary, and the texture is scrolled along the object. The

result is that the ground appears to move.
3. It changes the time scale of the entire game. However, notice that power-ups and

obstacles still appear to move fast. Why could this be?

Exercise
It is time for you to attempt to implement some of the changes you noted when
playtesting this game. You should attempt to make the game unique to you. Hopefully,
you were able to identify some weaknesses of the game or some strengths that you
would like to improve. Here are some things to consider changing:

 Try adding new/different power-ups and obstacles.
 Try changing the old GUI code to instead use Unity’s new UI system.
 Try to increase or decrease the difficulty by changing how often power-ups and
obstacles spawn. Also change how much time is added by power-ups or how
long the world is slowed. You could even try to adjust how much the world is
slowed or give different objects different slowed speeds.
 Give the power-ups and obstacles a new look. Play around with textures and
particle effects to make them look awesome.
 Show the total distance traveled in place of a score, and perhaps even make the
game speed continually increase to create a lose condition.

HOUR 21
Audio

What You’ll Learn in This Hour:
 The basics of audio in Unity
 How to use audio sources
 How to work with audio via scripts
 How to use audio mixers

In this hour, you’ll learn about audio in Unity. You’ll start by learning about the basics
of audio. From there, you’ll explore the audio source components and how they work.
You’ll also take a look at individual audio clips and their role in the process. You’ll
then learn how to manipulate audio in code before wrapping up the hour with audio
mixers.

Audio Basics
A large part of any experience involves the sounds of that experience. Imagine adding
a laugh track to a scary movie. All of a sudden, what should be a tense experience
would become a funny one. With video games, most of the time players don’t realize
it, but the sound is a very large part of the overall gameplay. Audio cues like chimes
mark when a player unlocks a secret. Roaring battle cannons add a touch of realism to
a war simulation game. Using Unity, implementing amazing audio effects is easy.

Parts of Audio
For sounds to work in a scene, you need three things: the audio listener, the audio
source, and the audio clip. The audio listener is the most basic component of an audio
system. The listener is a simple component whose sole responsibility is “hearing” the
things that are happening in a scene. Listeners are like ears in a game world. By
default, every scene starts with an audio listener attached to the Main Camera (see
Figure 21.1). There are no properties available for the audio listener, and there is
nothing you need to do to make it work.

It is a common practice to put the audio listener on whatever game object represents
the player. If you put an audio listener on any other game object, you need to remove it
from the Main Camera. Only a single audio listener is allowed per scene.

FIGURE 21.1
The audio listener.

The audio listener listens for sound, but it is the audio source that actually emits the
sound. This source is a component that can be put on any object in a scene (even the
object with the audio listener on it). There are many properties and settings involved
with the audio source; they are covered in their own section later in this hour.
The last item required for functioning audio is the audio clip. Just as you would
assume, the audio clip is the sound file that actually gets played by an audio source.
Each clip has some properties that you can set to change the way Unity plays them.
Unity supports the following audio formats: .aif, .aiff .wav, .mp3, .ogg, .mod, .it, .s3m,
and .xm.
Together, these three items—audio listener, audio source, and audio clip—give your
scene an audio experience.

2D and 3D Audio
One concept to be aware of with audio is the idea of 2D and 3D audio. 2D audio clips
are the most basic types of audio. They play at the same volume regardless of the
audio listener’s proximity to the audio source in a scene. 2D sounds are best used for
menus, warnings, soundtracks, or any audio that must always be heard exactly the
same way. The greatest asset of 2D sounds is also their greatest weakness. Consider if
every sound in your game played at exactly the same volume, regardless of where you
were. It would be chaotic and unrealistic.
3D audio solves the problems of 2D audio. These audio clips feature something called
rolloff, which dictates how sounds get quieter or louder depending on how close the
audio listener gets to the audio source. In sophisticated audio systems, like Unity’s, 3D
sounds can even have a simulated Doppler effect (more on that later). If you are
looking for realistic audio in a scene full of different audio sources, 3D audio is the
way to go.
The dimensionality of each audio clip is managed on the audio source that plays the
clip.

Audio Sources
As mentioned earlier in this hour, the audio sources are the components that actually
play audio clips in a scene. The distance between these sources and the listeners
determines how 3D audio clips sound. To add an audio source to a game object, select
the desired object and click Add Component > Audio > Audio Source.
The Audio Source component has a series of properties that give you a fine level of
control over how sound plays in a scene. Table 21.1 describes the various properties of
the Audio Source component. In addition to these properties, the 3D Sound Settings
section, covered later in this hour, has a number of settings you can apply to 3D audio
clips.

TABLE 21.1 Audio Source Component Properties

Property Description

Audio Clip Specifies the actual sound file to play.

Output (Optional) Makes it possible to output the sound clip to an audio mixer.

Mute Determines whether the sound is muted.

Bypass
Effects

Determines whether audio effects are applied to this source. Selecting
this property turns off effects.

Bypass
Listener
Effects

Determines whether audio listener effects are applied to this source.
Selecting this property turns off effects.

Bypass
Reverb
Zones

Determines whether reverb zone effects are applied to this source.
Selecting this property turns off effects.

Play On
Awake

Determines whether the audio source will begin playing the sound as
soon as the scene launches.

Loop Determines whether the audio source will restart the audio clip once it
has finished playing.

Priority Specifies the importance of the audio source. 0 is the most important,
and 255 is the least important. Use 0 for music so it always plays.

Volume Specifies the volume of the audio source, where 1 is the equivalent of
100% volume.

Pitch Specifies the pitch of the audio source.

Stereo Pan Sets the position in the stereo field of the 2D component of the sound.

Spatial
Blend

Sets how much the 3D engine has an effect on the audio source. Use
this to control if a sound is 2D or 3D.

Reverb
Zone Mix

Sets the amount of the output signal that gets routed to the reverb
zones.

NOTE

Audio Priorities
Every system has a finite number of audio channels. This number is not consistent
and depends on many factors, such as the system’s hardware and operating system.
For this reason, most audio systems employ a priority system. In a priority system,
sounds are played in the order in which they are received until the maximum
number of channels are used. Once all the channels are in use, lower-priority
sounds are swapped out for higher-priority sounds. Just be sure to remember that in
Unity a lower-priority number means a higher actual priority!

Importing Audio Clips
Audio sources don’t do anything unless they have audio to play. In Unity, importing
audio is as easy as importing anything else. You just need to click and drag the files
you want into the Project view to add them to your assets. The audio files used in this
hour have been graciously provided by Jeremy Handel (http://handelabra.com).

 TRY IT YOURSELF

Testing Audio

http://handelabra.com

In this exercise, you’ll test your audio in Unity and make sure everything works.
Be sure to save this scene because you will use it again later in this hour. Follow
these steps:

1. Create a new project or scene. Locate the Sounds folder in the book assets
for Hour 21 and drag it into the Project view in Unity to import it.

2. Create a cube in your scene and position it at (0, 0, 0).

3. Add an audio source to the cube (by selecting Add Component > Audio >
Audio Source).

4. Locate the file looper.ogg in the newly imported Sounds folder and drag it
into the Audio Clip property of the audio source on the cube (see Figure
21.2).

5. Ensure that the Play On Awake property is checked, and run your scene.
Notice the sound playing. The audio should stop after about 20 seconds
(unless you set it to loop).

FIGURE 21.2
Adding a clip to a source.

NOTE

Mute Audio Button
At the top of the Game window is a button called Mute Audio (between Maximize
on Play and Stats). If you don’t hear anything when your game is playing, ensure
that this button is not pressed in.

Testing Audio in the Scene View
It would get a bit taxing if you needed to run a scene every time you wanted to test
your audio. Not only would you need to start up the scene, you would also need to
navigate to the sound in the world. That is not always easy—or even possible. Instead,
you can test your audio in the Scene view.

To test audio in the Scene view, you need to turn on scene audio. Do this by clicking
the scene audio toggle (see Figure 21.3). When it is selected, an imaginary audio
listener is used. This listener is positioned on your frame of reference in the Scene
view (not on the position of the actual audio listener component).

FIGURE 21.3
The audio toggle.

 TRY IT YOURSELF

Adding Audio in the Scene View
This exercise shows you how to test your audio in the Scene view. It uses the
scene created in the Try It Yourself “Testing Audio.” If you have not completed
that scene yet, do so before continuing. Follow these steps:

1. Open the scene you created in the Try It Yourself “Testing Audio.”

2. Turn on the scene audio toggle (refer to Figure 21.3).

3. Move around the Scene view. Notice that the sound stays the same volume,
regardless of your distance from the cube emitting the sound. By default, all
sound sources default to 2D.

4. Drag the Spatial Blend slider over to 3D (see Figure 21.4). Now try moving
around in Scene view again. Note that the sound now gets quieter as you get
further away.

FIGURE 21.4
The 3D audio settings.

3D Audio
As mentioned earlier in this hour, all audio is set to be fully 2D by default. It is easy to
change it to fully 3D by setting the Spatial Blend slider to 1. This means all audio will
be subject to the 3D audio effects that are distance and movement based. These effects
are modified by the 3D properties of the audio component (refer to Figure 21.4).
Table 21.2 describes the various 3D audio properties.

TIP

Using the Graph
As you play with the options under 3D Sound Settings, look at the graph. It will tell
you how loud the audio will be at various distances and is a great way of
visualizing the effect of the controls. In this case, a picture really does say a
thousand words!

TABLE 21.2 3D Audio Properties

Property Description

Doppler
Level

Determines how much Doppler effect (how sound is distorted while you
are traveling toward or away from it) is applied to the audio. A setting of

0 means no effect will be applied.

Spread Specifies how spread out the various speakers of a system are. A setting
of 0 means that all speakers are at the same position and that the signal is
essentially a mono signal. Leave this alone unless you understand more
about audio systems.

Volume
Rolloff

Determines how the change in sound volume over distance is applied.
Logarithmic is set by default. You can also choose Linear or set your own
curve with a custom rolloff.

Min
Distance

Specifies the distance you can be away from the source and still receive
100% volume. The higher the number, the farther the distance.

Max
Distance

Specifies the farthest you can be from the source and still hear some
volume.

2D Audio
Sometimes you want some audio to play regardless of its position in the scene. The
most common example of this is background music. To switch an audio source from
3D to 2D, drag the Spatial Blend slider over to 2D (this is the default; refer to Figure
21.4). Notice that you can also have a blend between 2D and 3D, meaning the audio
will always be heard at least some amount, regardless of your distance from it.
The settings above the 3D Sound Settings section, such as Priority, Volume, Pitch, and
so on, apply to both the 2D and the 3D portions of the sound. The settings in the 3D
Sound Settings section obviously apply only to the 3D portion.

Audio Scripting
Playing audio from an audio source when it is created is nice, assuming that’s the
functionality that you want. If you want to wait and play a sound at a certain time, or if
you want to play different sounds from the same source, however, you need to use
scripting. Luckily, it isn’t too difficult to manage your audio through code. Most of it
works just like any audio player you’re used to: Just pick a song and click Play. All
audio scripting is done using variables and methods that are a part of the class Audio.

Starting and Stopping Audio
When dealing with audio in script, the first thing you need to do is get a reference to
the Audio Source component. Use the following code to do this:
Click here to view code image

AudioSource audioSource;

void Start ()
{

 // Find the audio source component on the cube
 audioSource = GetComponent<AudioSource> ();
}

Now that you have a reference stored in the variable audioSource, you can start
calling methods on it. The most basic functionality you could want is simply starting
and stopping an audio clip. These actions are controlled by two methods simply named
Start() and Stop(). Using these methods looks like this:
Click here to view code image

audioSource.Start(); // Starts a clip
audioSource.Stop(); // Stops a clip

This code will play the clip specified by the Audio Clip property of the Audio Source
component. You also have the ability to start a clip after a delay. To do that, you use
the method PlayDelayed(), which takes in a single parameter that is the time in
seconds to wait before playing the clip and looks like this:
Click here to view code image

audioSource.PlayDelayed(<some time in seconds>);

You can tell whether a clip is currently playing by checking the isPlaying variable,
which is part of the audioSource object. To access this variable, and thus see if the
clip is playing, you could type the following:
Click here to view code image

if(audioSource.isPlaying)
{
 // The track is playing
}

As the name implies, this variable is true if the audio is currently playing and false if it
is not.

 TRY IT YOURSELF

Starting and Stopping Audio
Follow these steps to see how to use scripts to start and stop an audio clip:

1. Open the scene you created in the Try It Yourself “Adding Audio in the
Scene View.”

2. On the Cube game object created previously, locate the Audio Source
component. Uncheck the Play On Wake property and check the Loop
property.

3. Create a new folder named Scripts and create a new script in it called
AudioScript. Attach the script to the cube. Change the entire script code to

the following:
Click here to view code image

using UnityEngine;

public class AudioScript : MonoBehaviour
{
 AudioSource audioSource;

 void Start()
 {
 audioSource = GetComponent<AudioSource>();
 }

 void Update()
 {
 if (Input.GetButtonDown("Jump"))
 {
 if (audioSource.isPlaying == true)
 audioSource.Stop();
 else
 audioSource.Play();
 }
 }
}

4. Play the scene. You can start and stop the audio by pressing the spacebar.
Notice that the audio clip starts over every time you play the audio.

TIP

Unmentioned Properties
All the properties of the audio source that are listed in the Inspector are also
available via scripting. For instance, the Loop property is accessed in code with the
audioSource.loop variable. As mentioned earlier in this hour, all these
variables are used in conjunction with the audio object. See how many you can
find!

Changing Audio Clips
You can easily control which audio clips to play via scripts. The key is to change the
Audio Clip property in the code before using the Play() method to play the clip.
Always be sure to stop the current audio clip before switching to a new one; otherwise,
the clip won’t switch.
To change the audio clip of an audio source, assign a variable of type AudioClip to
the clip variable of the audioSource object. For example, if you had an audio

clip called newClip, you could assign it to an audio source and play it by using the
following code:
Click here to view code image

audioSource.clip = newClip;
audioSoure.Play();

You can easily create a collection of audio clips and switch them out in this manner.
You will do this in the exercise at the end of this hour.

Audio Mixers
So far you’ve seen how to play audio from a source and have it heard by a listener.
That process has been very straightforward and easy to use, but you are using it “in a
vacuum.” That is, you are playing only a single audio clip—or a small number of them
—at a time. Difficulties arise when you need to start balancing audio volumes and
effects with each other. It could be quite a pain to constantly need to find and modify
each audio source in a scene or prefab. This is where audio mixers come in. Audio
mixers are assets that act as mixing boards, allowing a fine level of control when
balancing audio.

Creating Audio Mixers
Audio mixer assets are very easy to create and use. To make one, simply right-click in
the Project view and select Create > Audio Mixer. Once an audio mixer asset is
created, you can double-click it to open the Audio Mixer view (see Figure 21.5).
Alternatively, you can select Window > Audio Mixer to open the Audio Mixer view.

FIGURE 21.5
The Audio Mixer view.

Sending Audio to Mixers
Once you have an audio mixer, you need to route sounds through it. Routing audio
through a mixer requires setting the output of an audio source to one of the audio
mixer’s groups. By default, an audio mixer has only a single group, called Master. You
can add more groups to make organizing your audio easier (see Figure 21.6). Groups
can even represent other audio mixers for a very modular approach to audio
management.

FIGURE 21.6
Adding groups.

Once you’ve created the desired audio groups, simply set the output property of an
Audio Source component to your group (see Figure 21.7). Doing so allows the audio
mixer to control the volume and effects of the audio clip. Furthermore, it overwrites
the audio source’s Spatial Blend property and treats the audio like a 2D audio source.
By using the audio mixer, you can control the volume and effects for an entire
collection of audio sources at once (see Figure 21.7).

FIGURE 21.7
Routing audio.

Summary

In this hour, you’ve learned about using audio in Unity. You started by learning about
the basics of audio and the components required to make it work. From there, you
explored the Audio Source component. You learned how to test audio in the Scene
view and how to use 2D and 3D audio clips. You finished the hour by learning to
manipulate audio through scripts and exploring the use of audio mixers.

Q&A
Q. How many audio channels does a system have, on average?
A. It truly varies for every system. Most modern gaming platforms can

simultaneously play dozens or hundreds of audio clips at the same time. The key
is to know your target platform and use the priority system well.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. What items are needed for working audio?
2. True or False: 3D sounds play at the same volume, regardless of the listener’s

distance from the source?
3. What method allows you to play an audio clip after a delay?

Answers
1. Audio listener, audio source, and audio clip
2. False. 2D sounds play at the same volume, regardless of the listener’s distance

from the source.
3. PlayDelayed()

Exercise
In this exercise, you’ll create a basic sound board. This sound board will allow you to
play one of three sounds. You will also have the ability to start and stop the sounds and
to turn looping on and off.

1. Create a new project or scene. Add a cube to the scene at position (0, 0, -10)
and add an audio source to the cube. Be sure to uncheck the Play On Awake
property. Locate the Sounds folder in the book assets for Hour 21 and drag it
into the Assets folder.

2. Create a new folder called Scripts and create a new script named AudioScript

in it. Attach the script to the cube. Replace the contents of the script with the
following:

Click here to view code image

using UnityEngine;

public class AudioScript : MonoBehaviour
{
 public AudioClip clip1;
 public AudioClip clip2;
 public AudioClip clip3;

 AudioSource audioSource;

 void Start()
 {
 audioSource = GetComponent<AudioSource>();
 audioSource.clip = clip1;
 }

 void Update()
 {
 if (Input.GetButtonDown("Jump"))
 {
 if (audioSource.isPlaying == true)
 audioSource.Stop();
 else
 audioSource.Play();
 }

 if (Input.GetKeyDown(KeyCode.L))
 {
 audioSource.loop = !audioSource.loop; // toggles lopping
 }

 if (Input.GetKeyDown(KeyCode.Alpha1))
 {
 audioSource.Stop();
 audioSource.clip = clip1;
 audioSource.Play();
 }
 else if (Input.GetKeyDown(KeyCode.Alpha2))
 {
 audioSource.Stop();
 audioSource.clip = clip2;
 audioSource.Play();
 }
 else if (Input.GetKeyDown(KeyCode.Alpha3))
 {
 audioSource.Stop();

 audioSource.clip = clip3;
 audioSource.Play();
 }
 }
}

3. In the Unity editor, select the cube in your scene. Drag the audio files
looper.ogg, quick_laser.ogg, and xxplosion.ogg from the Sounds folder onto
the Clip1, Clip2, and Clip3 properties of the audio script.

4. Run your scene. Notice how you can change your audio clips with the keys 1,
2, and 3. You can also start and stop the audio with the spacebar. Finally, you
can toggle looping with the L key.

HOUR 22
Mobile Development

What You’ll Learn in This Hour:
 How to prepare for mobile development
 How to use a device’s accelerometer
 How to use a device’s touch display

Mobile devices such as phones and tablets are becoming common gaming devices. In
this hour, you’ll learn about mobile development with Unity for Android and iOS
devices. You’ll begin by looking at the requirements for mobile development. From
there, you’ll learn how to accept special inputs from a device’s accelerometer. Finally,
you’ll learn about touch interface input.

NOTE

Requirements
This hour covers development for mobile devices specifically. So, if you do not
have a mobile device (iOS or Android), you will not be able to follow along with
any of the hands-on exercises in this hour. Don’t worry, though: What you read
here should still make sense, and you will still be able to make games for mobile
devices but just won’t be able to play them.

Preparing for Mobile
Unity makes developing games for mobile devices easy. You will also be happy to
know that developing for mobile platforms is almost identical to developing for other
platforms. The biggest difference to account for is that mobile platforms have different
input (no keyboard or mouse, usually). If you approach your development with this in
mind, however, you can build a game once and deploy it everywhere. There is no
longer any reason you can’t build your games for every major platform. This level of
cross-platform capability is unprecedented. Before you can begin working with mobile
devices in Unity, however, you need to get your computer set up and configured to do

it.

NOTE

Multitudes of Devices
There are many different types of mobile devices. At the time this book was
published, Apple had two classes of game-ready mobile devices: iPad and
iPhone/iPod. Android had an untold number of phones and tablets, and many
Windows mobile devices were available as well. Each of these types of devices has
slightly different hardware and requires slightly different configuration steps.
Therefore, this lesson simply attempts to guide you through the installation process.
It would be impossible to write an exact guide that would work for everyone. In
fact, several guides by Unity, Apple, and Android (Google) already exist that
explain the process better than this text could. You are referred to them when
needed.

Setting Up Your Environment
Before even opening Unity to make a game, you need to set up your development
environment. The specifics of this differ depending on your target device and what you
are trying to do, but the general steps are as follows:

1. Install the software development kit (SDK) of the device you are targeting.

2. Ensure that your computer recognizes and can work with that device (though
this is important only if you want to test on the device).

3. For Android only, tell Unity where to find the SDK.

If these steps seem a bit cryptic to you, don’t worry. Plenty of resources are available
to assist you with these steps. The best place to start is with Unity’s own
documentation, which is available at http://docs.unity3d.com. This site contains living
documentation about all facets of Unity.
As you can see in Figure 22.1, the Unity documentation has guides to assist you in
setting up both the iOS and the Android environments. These documents are updated
as the steps to set up the environments change. If you’re not planning on following
along with a device, continue on to the next section. If you are planning on following
along with a device, complete the steps in the Unity documentation to configure your
development environment before continuing on to the next section.

http://docs.unity3d.com

FIGURE 22.1
Platform-specific documentation.

Unity Remote
The most basic way to test your games on a device is to build your projects, put the
resulting files on the device, and then run your game. This can be a cumbersome
system and one you’re sure to tire of quickly. Another way to test your games is to
build a project and then run it through an iOS or Android emulator. Again, this
requires quite a few steps and involves configuring and running an emulator. These
systems can be useful if you are doing extensive testing on performance, rendering,
and other advanced processes. For basic testing, though, there is a much better way:
Use Unity Remote.
Unity Remote is an app you can obtain from your mobile device’s application store
that enables you to test your projects on your mobile device while it is running in the
Unity editor. In a nutshell, this means you can experience your game running on a
device in real time, alongside development, and use the device to send device inputs
back to your game. You can find more information about Unity Remote at
https://docs.unity3d.com/Manual/UnityRemote5.html.
To find the Unity Remote application, search for the term Unity Remote in your
device’s application store. From there, you can download and install it just as you
would any other application (see Figure 22.2).
Once installed, Unity Remote acts as both a display for your game and a controller.
You will be able to use it to send click information, accelerometer information, and
multi-touch input back to Unity. It is especially effective because it gives you the
ability to test your game (minimally) without installing any mobile SDKs or
specialized developer accounts.

https://docs.unity3d.com/Manual/UnityRemote5.html

FIGURE 22.2
Unity Remote on the Google Play store.

 TRY IT YOURSELF

Testing Device Setup
This exercise gives you an opportunity to ensure that your mobile development
environment is set up correctly. In this exercise, you’ll use Unity Remote from
your device to interact with a scene in Unity. If you don’t have a device set up,
you won’t be able to perform all these steps, but you can still get an idea of
what’s happening by reading along. If this process doesn’t work for you, it
means that something with your environment is not set up correctly. Follow
these steps:

1. Create a new project or scene and add a UI button to the center of the
screen.

2. Set the button’s Pressed Color to Red in the Inspector.

3. Run the scene and ensure that clicking the button changes its color. Stop the
scene.

4. Attach your mobile device to your computer with a USB cable. When the
computer recognizes your device, open the Unity Remote app on your

device.

5. In Unity, select Edit > Project Settings > Editor and choose your device
type in the Inspector under Unity Remote > Device. Note that if you don’t
have a mobile platform installed for Unity (Android or iOS), the option for it
will not appear in the Editor settings.

6. Run the scene again. After a second, you should see the button appear on
your mobile device. You should now be able to tap the button on your
device’s screen to change its color.

Accelerometers
Most modern mobile devices come with built-in accelerometers. An accelerometer
relays information about the physical orientation of the device. It can tell whether the
device is moving, tilted, or flat. It can also detect these things in all three axes. Figure
22.3 shows a mobile device’s accelerometer axes and how they are oriented in portrait
orientation.

FIGURE 22.3
Accelerometer axes.

As you can see in Figure 22.3, the default axes of a device align with the 3D axes in
Unity while the device is being held upright in portrait orientation directly in front of
you. If you turn the device to use it in a different orientation, you need to convert the
accelerometer data to the correct axis. For example, if you were using the phone
pictured in Figure 22.3 in landscape orientation (on its side), you would use the X axis
from the phone’s accelerometer to represent the Y axis in Unity.

Designing for the Accelerometer
You need to keep in mind a few things when designing a game to use a mobile
device’s accelerometer. The first is that you can only ever reliably use two of the
accelerometer’s axes at any given time. The reason for this is that no matter the
orientation of the device, one axis will always be actively engaged by gravity.
Consider the orientation of the device in Figure 22.3. You can see that while the x and
z axes can be manipulated by tilting the device, the y axis is currently reading negative
values, as gravity is pulling it down. If you were to turn the phone so that it rested flat
on a surface, face up, you would only be able to use the x and y axes. In that case, the z
axis would be actively engaged.
Another thing to consider when designing for an accelerometer is that the input is not
extremely accurate. Mobile devices do not read from their accelerometers at a set
interval, and they often have to approximate values. As a result, the inputs read from
an accelerometer can be jerky and uneven. A common practice, therefore, is to
smoothly move objects with accelerometer inputs or to take an average of the inputs
over time. Also, accelerometers give input values from -1 to +1, with full 180-degree
rotation of the device. No one plays games while fully tilting a devices, though, so
input values are generally less than their keyboard counterparts (for example, -.5 to .5).

Using the Accelerometer
Reading accelerometer input is done just like reading any other form of user input: via
scripts. All you need to do is read from the Vector3 variable named acceleration,
which is a part of the Input object. Therefore, you could access the x, y, and z axis
data by writing the following:
Click here to view code image

Input.acceleration.x;
Input.acceleration.y;
Input.acceleration.z;

Using these values, you can manipulate your game objects accordingly.

NOTE

Axis Mismatch
When using accelerometer information in conjunction with Unity Remote, you
might notice that the axes aren’t lining up as described earlier in this hour. This is
because Unity Remote bases the game’s orientation on the aspect ratio chosen. This
means that Unity Remote automatically displays in landscape orientation (holding
your device sideways so that the longer edge is parallel to the ground) and
translates the axes for you. Therefore, when you are using Unity Remote, the x axis
runs along the long edge of your device, and the y axis runs along the short edge. It
might seem strange, but chances are you were going to use your device like that
anyway, so this saves you a step.

 TRY IT YOURSELF

Moving a Cube with the Power of Your Mind…or Your Phone
In this exercise, you’ll use a mobile device’s accelerometer to move a cube
around a scene. Obviously, to complete this exercise, you need a configured and
attached mobile device with an accelerometer. Follow these steps:

1. Create a new project or scene. (If you create a new project, remember to
modify the editor settings as described in the previous section.) Add a cube
to the scene and position it at (0, 0, 0).

2. Create a new script called AccelerometerScript and attach it to the cube. Put
the following code in the Update() method of the script:

Click here to view code image

float x = Input.acceleration.x * Time.deltaTime;
float z = -Input.acceleration.z * Time.deltaTime;
transform.Translate(x, 0f, z);

3. Ensure that your mobile device is plugged in to your computer. Hold the
device in landscape orientation and run Unity Remote. Run the scene. Notice
that you can move the cube by tilting your phone. Notice which axes of the
phone move the cube along the x and z axes.

Multi-Touch Input
Mobile devices tend to be controlled largely through the use of their touch-capacitive
screens. These screens can detect when and where a user touches them. They usually
can track multiple touches at a time. The exact number of touches varies based on the
device.
Touching the screen doesn’t just give the device a simple touch location. In fact, there
is quite a bit of information stored about each individual touch. In Unity, each screen

touch is stored in a Touch variable. This means that every time you touch a screen, a
Touch variable is generated. That Touch variable will exist as long as your finger
remains on the screen. If you drag your finger along the screen, the Touch variable
tracks that. The Touch variables are stored together in a collection called touches,
which is part of the Input object. If there is currently nothing touching the screen,
then this collection of touches is empty. To access this collection, you could enter the
following:

Input.touches;

By using the touches collection, you could iterate through each Touch variable to
process its data. Doing so would look something like this:
Click here to view code image

foreach(Touch touch in Input.touches)
{
 // Do something
}

As mentioned earlier in this hour, each touch contains more information than the
simple screen data where the touch occurred. Table 22.1 lists all the properties of the
Touch variable type.

TABLE 22.1 Touch Variable Properties

Property Description

deltaPosition The change in touch position since the last update. This is useful
for detecting finger drags.

deltaTime The amount of time that has passed since the last change to the
touch.

fingerId The unique index for the touch. For example, this would range
from 0 to 4 on devices that allow five touches at a time.

phase The current phase of the touch: Began, Moved,
Stationary, Ended, or Canceled.

position The 2D position of the touch on the screen.
tapCount The number of taps the touch has performed on the screen.

These properties are useful for managing complex interactions between the user and
game objects.

 TRY IT YOURSELF

Tracking Touches

In this exercise, you’ll track finger touches and output their data to the screen.
Obviously, to complete this exercise, you need a configured and attached mobile
device with multi-touch support. Follow these steps:

1. Create a new project or scene.

2. Create a new script called TouchScript and attach it to the Main Camera. Put
the following code in the script:

Click here to view code image

void OnGUI()
{
 foreach (Touch touch in Input.touches)
 {
 string message = "";
 message += "ID: " +touch.fingerId + "\n";
 message += "Phase: " +touch.phase.ToString() + "\n";
 message += "TapCount: " +touch.tapCount + "\n";
 message += "Pos X: " +touch.position.x + "\n";
 message += "Pos Y: " +touch.position.y + "\n";

 int num = touch.fingerId;
 GUI.Label(new Rect(0 + 130 * num, 0, 120, 100), message);
 }
}

3. Ensure that your mobile device is plugged in to your computer. Run the
scene. Touch the screen with your finger and notice the information that
appears (see Figure 22.4). Move your finger and see how the data changes.
Now touch with more fingers simultaneously. Move them about and take
them off the screen randomly. See how it tracks each touch independently?
How many touches can you get on your screen at a time?

FIGURE 22.4
Touch output on the screen.

CAUTION

Do Because I Say, Not Because I Do!
In the Try It Yourself "Tracking Touches," you created an OnGUI() method that
collects information about the various touches on the screen. The part of the code
where the string message is being built with the touch data is a big no-no.
Performing too much processing in an OnGUI() method can greatly reduce the
efficiency of a project, and you should try to avoid this. I used this method because
it was an easy way to build the example without unneeded complexity and for
demonstration purposes only. Always keep update code where it belongs: in
Update(). In addition, you should really use the new UI because it is much
faster.

Summary
In this hour, you’ve learned about using Unity to develop games for mobile devices.
You started by learning how to configure your development environment to work with
Android and iOS. From there, you learned how to work with a device’s accelerometer.
You finished up the hour by experimenting with Unity’s touch-tracking system.

Q&A
Q. Can I really build a game once and deploy it to all major platforms, mobile

included?
A. Absolutely! The only thing to consider is that mobile devices generally don’t

have as much processing power as desktops. Therefore, mobile device users
might experience some performance issues if your game has a lot of heavy
processing or effects. You will need to ensure that your game is running
efficiently if you plan to also deploy it on mobile platforms.

Q. What are the differences between iOS and Android devices?
A. From a Unity point of view, there isn’t much difference between these two

operating systems. They are both treated as mobile devices. Be aware, though,
that there are some device differences (such as processing power, battery life,
and phone OS) that can affect your games.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. What tool allows you to send live device input data to Unity while it is running a

scene?
2. How many axes on the accelerometer can you realistically use at a time?
3. How many touches can a device have at once?

Answers
1. The Unity Remote app
2. Two axes. The third is always engaged by gravity, depending on how you are

holding the device.
3. It depends entirely on the device. The last time I tested an iOS device, I was able

to track 21 touches. That’s enough for all your fingers and toes, plus 1 from a
friend!

Exercise
In this exercise, you’ll move objects about a scene based on touch input from a mobile
device. Obviously, to complete this exercise, you need a configured and attached
mobile device with multi-touch support. If you do not have that, you can still read
along to get the basic idea.

1. Create a new project or scene. Select Edit > Project Settings > Editor and set
the Device property to recognize your Unity Remote app.

2. Add three cubes to the scene and name them Cube1, Cube2, and Cube3.
Position them at (-3, 1, -5), (0, 1, -5), and (3, 1, -5), respectively.

3. Create a new folder named Scripts. Create a new script called InputScript in
the Scripts folder and attach it to the three cubes.

4. Add the following code to the Update() method of the script:

Click here to view code image

foreach (Touch touch in Input.touches)
{
 float xMove = touch.deltaPosition.x * 0.05f;
 float yMove = touch.deltaPosition.y * 0.05f;

 if (touch.fingerId == 0 && gameObject.name == "Cube1")
 transform.Translate(xMove, yMove, 0F);

 if (touch.fingerId == 1 && gameObject.name == "Cube2")
 transform.Translate(xMove, yMove, 0F);

 if (touch.fingerId == 2 && gameObject.name == "Cube3")
 transform.Translate(xMove, yMove, 0F);

}

5. Run the scene and touch the screen with up to three fingers. Notice that you
can move the three cubes independently. Also notice that lifting one finger
does not cause the other fingers to lose their cubes or their place.

HOUR 23
Polish and Deploy

What You’ll Learn in This Hour:
 How to manage scenes in a game
 How to save data and objects between scenes
 The different player settings
 How to deploy a game

In this hour, you’ll learn all about polishing a game and deploying it. You’ll start by
learning how to move about different scenes. Then you’ll explore ways to persist data
and game objects between scenes. From there, you’ll take a look at the Unity player
and its settings. You’ll then learn how to build and deploy a game.

Managing Scenes
So far, everything you have done in Unity has been in the same scene. Although it is
certainly possible to build large and complex games in this way, it is generally much
easier to use multiple scenes. The idea behind a scene is that it is a self-contained
collection of game objects. Therefore, when transitioning between scenes, all existing
game objects are destroyed, and all new game objects are created. However, you can
prevent this, as discussed in the next section.

NOTE

What Is a Scene? Revisited
You learned about the basics of scenes early on in this book. It is time, however, to
revisit that concept with the knowledge you now possess. Ideally, a scene is like a
level in a game. With games that get consistently harder or games that have
dynamically generated levels, though, this is not necessarily true. Therefore, it can
be good to think of a scene as a common list of assets. A game consisting of many
levels that use the same objects can actually consist of one scene. It is only when
you need to get rid of a bunch of objects and load a bunch of new objects that the

idea of a new scene really becomes necessary. Basically, you should not split levels
into different scenes just because you can. Create new scenes only if required by
the gameplay and for asset management.

NOTE

Building?
This hour tosses around two key terms: building and deploying. Although they can
often mean the same thing, they do have a slight difference. Building a project
means telling Unity to turn your Unity project into a final, executable set of files.
Therefore, building for the Windows OS will produce an .exe file with a data
folder, building for Mac OS will build a .dmg file with all game data in it, and so
on. Deploying means sending a built executable to a platform to be run. For
example, when building for Android, an .apk file (the game) is built, and then it is
deployed to an Android device for playing. These options are managed in Unity’s
build settings, which are covered shortly.

Establishing Scene Order
Transitioning between scenes is relatively easy. It just requires a little setup. The first
thing you do is add the scenes of your project to the project’s build settings, as follows:

1. Open the build settings by selecting File > Build Settings.

2. With the Build Settings dialog open, click and drag any scenes you want in
your final project into the Scenes in Build window (see Figure 23.1).

FIGURE 23.1
Adding scenes to the build settings.

3. Make note of the number that appears next to each scene in the Scenes in
Build window. You will need these numbers later.

 TRY IT YOURSELF

Adding Scenes to Build Settings
In this exercise, you’ll add scenes to the build settings of a project. Be sure to
save the project you make here because you will be using it again in the next
section. Follow these steps:

1. Create a new project and add to it a new folder named Scenes.

2. Click File > New Scene to create a new scene and then select File > Save
Scene As to save it. Save the scene in the Scenes folder as Scene1. Repeat
this step to save another scene called Scene2.

3. Open the build settings (by selecting File > Build Settings). Drag Scene1
into the Scenes in Build window first, and then drag Scene2 into the same
window. Ensure that Scene1 has an index of 0 and Scene2 has an index of 1.
If not, reorder them by dragging them around.

Switching Scenes
Now that the scene order is established, switching between them is easy. To change
scenes, use the method LoadScene(), which is a part of the SceneManager class.
In order to use this class, you need to tell Unity that you want to access it. You can do
that by adding the following line to the top of any script that needs it:
Click here to view code image

using UnityEngine.SceneManagement;

The LoadScene() method takes a single parameter that is either an integer
representing the scene’s index or a string representing the scene’s name. Therefore, to
load a scene that has an index of 1 and the name Scene2, you could write either of
these two lines:
Click here to view code image

SceneManager.LoadScene(1); // Load by index
SceneManager.LoadScene("Scene2"); // Load by name

This method call immediately destroys all existing game objects and loads the next
scene. Note that this command is immediate and irreversible, so make sure that it is
what you want to do before calling it. (The LevelManager prefab from the Exercise at
the end of Hour 14, “User Interfaces,” uses this method.)

TIP

Async Scene Loading
So far this book has focused on loading scenes immediately. That is, when you tell
the SceneManager class to change a scene, the current scene is unloaded and
then the next scene is loaded. This works well for small scenes, but if you are
trying to load a very large scene, there can be a pause between levels during which
the screen is black. To avoid this, one thing you could do is load a scene
asynchronously. This “async” style of loading tries to load a scene “behind the
scenes” while the main game continues on. When the new scene is loaded, the
scene is switched. This method isn’t instant, but it can help prevent gameplay
hiccups. Generally speaking, loading scenes asynchronously can be a bit complex
and is beyond the scope of this book.

Persisting Data and Objects
Now that you have learned how to switch between scenes, you have undoubtedly
noticed that data doesn’t transfer during a switch. In fact, so far all your scenes have
been completely self-contained, with no need to save anything. In more complex
games, however, saving data (often called persisting or serializing) becomes a real
necessity. In this section, you’ll learn how to keep objects from scene to scene and
how to save data to a file to access later.

Keeping Objects
An easy way to save data in between scenes is just to keep the objects with the data
alive. For example, if you have a player object that has scripts on it containing lives,
inventory, score, and so on, the easiest way to ensure that this large amount of data
makes it into the next scene is just to make sure that it doesn’t get destroyed. There is
an easy way to accomplish this, and it involves using a method called
DontDestroyOnLoad(). The method DontDestroyOnLoad() takes a single
parameter: the game object that you want to save. Therefore, if you want to save a
game object that is stored in a variable named Brick, you could write the following:

DontDestroyOnLoad (Brick);

Because the method takes a game object as a parameter, another great way for objects
to use it is to call it on themselves using the this keyword. For an object to save
itself, you put the following code in the Start() method of a script attached to it:

DontDestroyOnLoad (this);

Now when you switch scenes, your saved objects will be there waiting.

 TRY IT YOURSELF

Persisting Objects
In this exercise, you’ll save a cube from one scene to the next. For this exercise
you need the project created in the Try It Yourself “Adding Scenes to Build
Settings.” If you have not completed the project yet, do so before continuing. Be
sure to save this project because you will be using it again in the next section.
Follow these steps:

1. Load the project created in the Try It Yourself “Adding Scenes to Build
Settings.” Load Scene2 and add a sphere to the scene. Position the sphere at
(0, 2, 0).

2. Load Scene1 and a cube to the scene and position the cube at (0, 0, 0).

3. Create a Scripts folder and in it create a new script named DontDestroy.
Attach the script to the cube.

4. Modify the code in the DontDestroy script so that it contains the following:
Click here to view code image

using UnityEngine;
using UnityEngine.SceneManagement;

public class DontDestroy : MonoBehaviour
{
 void Start()
 {

 DontDestroyOnLoad(this);
 }

 // A neat trick for easily detecting mouse clicks on an object
 void OnMouseDown()
 {
 SceneManager.LoadScene(1);
 }
}

This code tells the cube to persist between scenes. In addition, it uses a little
trick for detecting when the user clicks on the cube (OnMouseDown();
store this one away for a rainy day). When the user clicks on the cube,
Scene2 is loaded.

5. Run the scene and notice that when you click the cube in the Game view,
the scene transitions, and you see the sphere appear next to the cube (see
Figure 23.2).

FIGURE 23.2
Cube persisting into Scene2.

CAUTION

Dark Scenes
You may have noticed that when you switch scenes, the new scene can be darker
even though there is a light in there. This is due to not having complete lighting
data for dynamically loaded scenes. Luckily, the solution is simple: Just load the
scene in Unity and select Window > Lighting > Settings. Uncheck Auto
Generate at the bottom and then click Generate Lighting. This tells Unity to stop
using temporary light calculations for the scene and to commit these calculations to

an asset. A folder appears next to your scene, with the same name as the scene.
Thereafter, the lighting will be fine when loading into the scene.

Saving Data
Sometimes you need to save data to a file so you can access it and later. Some things
you might need to save are the player’s score, configuration preferences, or inventory.
There are certainly many complex and feature-rich ways to save data, but a simple
solution is something called PlayerPrefs. PlayerPrefs is an object that exists to save
basic data to a file locally on your system. You can use PlayerPrefs to pull the data
back out.
Saving data to PlayerPrefs is as simple as supplying some name for the data and the
data itself. The methods you use to save the data depend on the type of data. For
instance, to save an integer, you call the SetInt() method. To get the integer, you
call the GetInt() method. Therefore, the code to save a value of 10 to PlayerPrefs
as the score and get the value back out would look like this:
Click here to view code image

PlayerPrefs.SetInt ("score", 10);
PlayerPrefs.GetInt ("score");

Likewise, there are methods to save strings (SetString()) and floats
(SetFloat()). Using these methods, you can easily persist any data you want to a
file.

 TRY IT YOURSELF

Using PlayerPrefs
In this exercise, you’ll save data to the PlayerPrefs file. For this exercise you
need the project created in the Try It Yourself “Persisting Objects.” If you have
not completed the project yet, do so before continuing. You will use the legacy
GUI for this exercise. The focus is on PlayerPrefs, not the UI. Follow these
steps:

1. Open the project you created in the Try It Yourself “Persisting Objects” and
ensure that Scene1 is loaded. Add a new script named SaveData to the
Scripts folder and add the following code to the script:

Click here to view code image

public string playerName = "";

void OnGUI()
{
 playerName = GUI.TextField(new Rect(5, 120, 100, 30), playerName);

 if (GUI.Button(new Rect(5, 180, 50, 50), "Save"))
 {
 PlayerPrefs.SetString("name", playerName);
 }
}

2. Attach the script to the Main Camera object. Save Scene1 and load Scene2.

3. Create a new script called LoadData and attach it to the Main Camera
object. Add the following code to the script:

Click here to view code image

string playerName = "";

void Start()
{
 playerName = PlayerPrefs.GetString("name");
}

void OnGUI()
{
 GUI.Label(new Rect(5, 220, 50, 30), playerName);
}

4. Save Scene2 and reload Scene1. Run the scene. Type your name into the
text field and click the Save button. Now click the cube to load Scene2. (The
scene switching cube was implemented in the previous Try It Yourself,
“Persisting Objects.”) Notice that the name you entered is written on the
screen. In this Try It Yourself, the data was saved to PlayerPrefs and then
reloaded from PlayerPrefs in a different scene.

CAUTION

Data Safety
Although using PlayerPrefs to save game data is very easy, it is not very secure.
The data is stored in an unencrypted file on the player’s hard drive. Therefore,
players could easily open the file and manipulate the data inside. This could enable
them to gain an unfair advantage or break the game. Be aware that PlayerPrefs, just
as the name indicates, is intended for saving player preferences. It just so happens
that it is useful for other things. True data security is a difficult thing to achieve and
is definitely beyond the scope of this book. Just be aware that PlayerPrefs will work
for what you need it for at this early stage in your development of games, but in the
future you will want to look into more complex and secure means of saving player
data.

Unity Player Settings

Unity provides several settings that affect how the game works after it is built. These
settings are called the player settings, and they manage things like the game’s icon and
supported aspect ratios. There are many settings, and many of them are self-
explanatory. If you select Edit > Project Settings > Player, the Player Settings
window opens in the Inspector view. Take your time to look through these settings and
read about them in the following sections so you can learn what they do.

Cross-Platform Settings
The first player settings you see are the cross-platform settings (see Figure 23.3).
These are the settings applied to the built game regardless of the platform (Windows,
iOS, Android, Mac, and so on) you built it for. Most of the settings in this section are
self-explanatory. The product name is the name that will appear as the title of your
game. The icon should be any valid texture image file. Note that the dimensions of the
icon have to be square powers of 2, such as 8×8, 16×16, 32×32, 64×64, and so on. If
the icon doesn’t match these dimensions, the scaling may not work properly, and the
icon quality might be very low. You can also specify a custom cursor and define where
the cursor hotspot (the spot on the cursor that is the actual “click” location) is.

FIGURE 23.3
The cross-platform settings.

Per-Platform Settings
The per-platform settings are specific to each platform. Even though there are several
repeat settings in this section, you still have to set up each one of them for every
platform you want to build your game for. You can select a specific platform by
choosing its icon from the selection bar (see Figure 23.4). Note that you see icons only

for the platforms you currently have installed for Unity. As you can see in Figure 23.4,
only the Standalone (PC, Mac, and Linux) and Android platforms are currently
installed on this machine.

FIGURE 23.4
The platform selection bar.

Many of these settings require a more specific understanding of the platform for which
you are building. You should not modify these settings until you better understand
how a particular platform works. Other settings are rather straightforward and need to
be modified only if you are trying to achieve a specific goal. For instance, the
Resolution and Presentation settings deal with the dimensions of the game window.
For desktop builds, these can be windowed or full screen, with a large array of
different supported aspect ratios. By enabling or disabling the different aspect ratios,
you allow or disallow different resolutions that the player can choose when playing the
game.
The icon settings are auto-populated for you if you specify an icon image for the
Default Icon property in the Cross-Platform Settings section. You can see that various
sizes of the icon image will be generated, based on a single provided image. This is
why it is important for the provided image to have the correct dimensions. You can
also provide a splash image for your game in the Splash Image section. A splash
image is an image that is added to the Player Settings dialog when a player first starts
up the game.

NOTE

Too Many Settings
You probably noticed that a large number of settings in the Player Settings dialog
aren’t covered in this section. Most of the properties are already set to default
values so that you can just quickly build a game. The other settings exist to achieve
advanced functionality or polish. You shouldn’t toy with most of the settings if you
don’t understand what they do because changes can lead to strange behaviors or
prevent your game from working at all. In short, use only the more basic settings
until you get more comfortable with game-building concepts and the different
features you have already used.

NOTE

Too Many Players
The term player is used a lot in this hour because there are two ways in which the
term can be applied. The first, obviously, is the player who actually plays your
game. This is a person. The second way the term can be used is to describe the
Unity player, the window that the game is played in (like a movie player or a TV).
The player exists on the computer (or device). Therefore, when you hear player, it
probably means a person, but when you hear player settings, it probably refers to
the software that actually displays the game.

Building Your Game
Let’s say that you’ve finished building your first game. You’ve completed all the work
and tested everything in the editor. You have even gone through the player settings and
set everything up the way you want it. Good job! It is now time to build your game.
You need to be aware of two settings windows used in this process. The first is the
Build Settings window, which is where you determine the final results of the build
process. The second is the Game Settings window, which involves settings that human
players see and configure.

Build Settings
The Build Settings window contains the terms under which the game is built. It is here
that you specify the platform the game will be built under as well as the various scenes
in the game. You have seen this dialog once before, but now you should take a closer
look at it.
To open the Build Settings dialog, select File > Build Settings. In the Build Settings
dialog, you can change and configure your game as you want. Figure 23.5 shows the
Build Settings dialog and the various items on it.
As you can see, in the Platform section, you can specify a new platform to build for. If
you choose a new platform, you need to click Switch Platform to make the switch.

Clicking the Player Settings button opens the Player Settings dialog in the Inspector
view. You have seen the Scenes in Build section before; this is where you determine
which scenes will make it into the game and their order. You also have the various
build settings for the specific platform that you chose. The PC, Mac & Linux
Standalone settings are self-explanatory. The only thing to note here is the
Development Build option, which allows the game to run with a debugger and
performance profiler.

FIGURE 23.5
The Build Settings dialog.

When you are ready to build your game, you can either click Build to just build the
game or Build and Run to build the game and then run it immediately. The file that
Unity creates will depend on the platform chosen.

Game Settings

When a built game is run from its actual file (not from within Unity), the player is
presented with a Game Settings dialog (see Figure 23.6). From this dialog, players
choose options for their game experience.
The first thing you may notice is that the name of the game appears in the title bar of
the window. Also, any splash image you provided in the Player Settings dialog appears
at the top of this window. This first tab, Graphics, is where players specify the
resolution at which they want to play the game. The list of available resolutions is
determined by the aspect ratios you allowed or disallowed in the Player Settings dialog
and the operating system. Players can also choose to run the game in a window or full
screen and can pick their quality settings.

FIGURE 23.6
The Game Settings dialog.

Players can then switch over to the Input tab (see Figure 23.7), where they can remap
any input axes to their desired keys and buttons.

FIGURE 23.7
The input settings.

NOTE

Told You So!
You might recall that earlier in this book I said you should always try to ensure that
the input you are reading from a player is based on one of the input axes and not
the specific keys. This is why. If you looked for specific keys instead of axes, the
player would have no choice but to use the control scheme you intended. If you
think this isn’t a big deal, just remember that a lot of people out there (people with
disabilities, for instance) use nonstandard input devices. If you deny them the
ability to remap controls, they might not be able to play your games. Using axes
instead of specific keys is a negligible amount of work on your part and can make
the difference between players loving or hating your game.

After players choose the settings they want, they just click Play! and begin enjoying
your game.

Summary
In this hour, you’ve learned all about polishing and building games in Unity. You
started by learning how to change scenes in Unity using the
SceneManager.LoadScene() method. From there, you learned how to persist
game objects and data. After that, you learned about the various player settings.

Finally, you wrapped up the hour by learning to build your games.

Q&A
Q. A lot of these settings looked important. Why doesn’t this hour cover them?
A. Truth be told, most of those settings are unnecessary for you. The fact is that

they aren’t important…until they are important. Most of the settings are platform
specific and are beyond the scope of this book. Instead of spending many pages
going over settings you might never use, it is left up to you to learn about them if
you ever need them.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. How do you determine the indexes of the scenes in your game?
2. True or False: Data can be saved using the PlayerPrefs object.
3. What dimensions should an icon for your game have?
4. True or False: The input settings in the game settings allow the player to remap

all inputs in your game.

Answers
1. After you add the scenes to the Scenes in Build list, each one has an index

assigned to it.
2. True
3. A game icon should be a square with sides that are powers of 2: 8×8, 16×16,

32×32, and so on.
4. False. The player can only remap inputs that were established based on input

axes, not specific keypresses.

Exercise
In this exercise, you’ll build a game for your desktop operating system and experiment
with the various features. There isn’t much to this exercise, and you should spend most
of your time trying out various settings and watching their impact. Because this is just
an example to get you building your games, there isn’t a completed project to look at
in the book assets.

1. Open any project you have created previously or create a new project. (Don’t

worry, I’ll wait.)

2. Go into the Player Settings dialog and configure your player however you
want.

3. Go into the Build Settings dialog and ensure that you have added your scenes
to the Scenes in Build list.

4. Ensure that the Platform is set to PC, Mac & Linux Standalone.

5. Build the game by clicking Build.

6. Locate the game file that you just built and run it. Experiment with the
different game settings and see how they affect the gameplay.

HOUR 24
Wrap-up

What You’ll Learn in This Hour:
 What you’ve accomplished so far
 Where to go from here
 What resources are available to you

In this hour, you’ll wrap up your introductory journey with Unity. You’ll start by
looking at exactly what you’ve done so far. From there, you’ll see where you can go to
continue improving your skills. Then you’ll learn about some of the resources
available to help you continue learning.

Accomplishments
When you have been working on something for a significant amount of time, you may
sometimes forget all that you have accomplished along the way. It is helpful to reflect
on the skills you had when you began learning something and compare them to the
skills you have now. There is a lot of motivation and satisfaction to be found in
discovering your progress, so let’s look at some numbers.

Your 19 Hours of Learning
First and foremost, you have spent 19 hours (possibly more) intensely learning the
various elements of game development with Unity. Here are some of the things you
have learned:

 How to use the Unity editor and many of its windows and dialogs.
 About game objects, transforms, and transformations. You learned about 2D
versus 3D coordinate systems and about local versus world coordinate systems.
You became a pro at using Unity’s built-in geometric shapes.
 About models. Specifically, you learned that models consist of textures and
shaders applied to materials, which in turn are applied to meshes. You learned

that meshes are made up of triangles that consist of many points in 3D space.
 How to build terrain in Unity. You sculpted unique landscapes and gave
yourself the tools needed to build any kind of world you could ever dream of.
(How many people can say that?) You improved those worlds with ambient
effects and environmental detail.
 All about cameras and lights.
 To program in Unity. If you had never programmed before this book, that’s a
big deal. Good job!
 About collisions, physical materials, and raycasting. In other words, you took
your first steps in object interactions through physics.
 About prefabs and instantiation.
 How to build UIs using Unity’s powerful user interface controls.
 How to control players through Unity’s character controllers. On top of that,
you built a custom 2D character controller to use in your own projects.
 How to build awesome 2D worlds with 2D Tilemap.
 How to make awesome particle effects using various particle systems. You
also checked out each particle module in detail.
 How to use Unity’s new Mecanim animation system. While learning that, you
learned how to remap the rigging on a model to use animations that weren’t
made specifically for it. You also learned how to edit animations to make your
own animation clips.
 How to sequence just about anything to create sophisticated cinematics with
the Timeline.
 How to manipulate audio in your projects. You learned how to work with both
2D and 3D audio, in addition to how to loop and swap audio clips.
 How to work with games made for mobile devices. You learned how to test
games with Unity Remote and using a device’s accelerometer and multi-touch
screen.
 How to polish a game by using multiple scenes and data persistence. You
learned how to build and play your games.

This is quite a list, and it’s not even everything you’ve learned in this book. As you
read through this list, I hope you remembered experiencing and learning each of these
items. You’ve learned a lot!

4 Complete Games
Over the course of this book, you created four games: Amazing Racer, Chaos Ball,
Captain Blaster, and Gauntlet Runner. You designed each of these games. You
worked through the concept of each one, determined the rules, and came up with the
requirements. Then you built all the entities for each of the games. You specifically
placed every object, player, world, ball, meteor, and more in the games. You wrote all

the scripts and built all the interactivity into the games. Then, most importantly, you
tested all the games. You determined their strengths and their weaknesses. You played
them, and you had peers play them. You considered how they could be improved, and
you even tried to improve them yourself. Take a look at some of the mechanics and
game concepts you used:

 Amazing Racer: This 3D foot-racing game against the clock utilized the built-
in first-person character controller as well as fully sculpted and textured
terrain. The game used water hazards, triggers, and lights.
 Chaos Ball: This 3D game featured many collision and physical dynamics.
You utilized physics materials to build a bouncy arena, and you implemented
corner goals that turned specific objects into kinematics.
 Captain Blaster: This retro-style 2D space shooter used a scrolling background
and 2D effects. It is the first game you made where the player can lose. You
used third-party models and textures to give this game a high level of graphical
style.
 Gauntlet Runner: This 3D running game involves collecting power-ups and
avoiding obstacles. This game utilized Mecanim animations and third-party
models, as well as clever manipulations of texture coordinates to achieve a 3D
scrolling effect.

You have gained experience in designing games, building them, testing them, and
updating them for new hardware. Not bad. Not bad at all.

More Than 50 Scenes
Over the course of this book, you created more than 50 scenes. Let that number sink in
for a moment. While reading through this book, you specifically got hands-on with at
least 50 different concepts. That is quite a lot of experience for you to draw upon.
By now, you probably get the point of this section. You’ve done a lot, and you should
be proud of that. You have personally used a huge part of the Unity game engine. That
knowledge will serve you well as you go forward.

Where to Go from Here
Even though you have completed this book, you are far from done with your education
in making games. In fact, it is fairly accurate to say that no one is ever truly done
learning in an industry that moves as quickly as this one. That said, here is some
advice on what you can do to keep going.

Make Games
No, seriously, make games. This cannot be overstated. If you are someone who is
trying to learn more about the Unity game engine, someone who is trying to find a
game job, or someone who has a game job and is looking to improve, make games. A

common misconception among people newer to the game industry (or the software
industry in general) is that knowledge alone will get you a job or improve your skills.
This couldn’t be further from the truth. Experience is king. Make games. They don’t
have to be big games. Start by making several smaller games like the ones you’ve
done in this book. In fact, trying a large game right away might lead to frustration and
disappointment. No matter what you decide to do, though, make games. (Did I
mention that yet?)

Work with People
There are many local and online collaborative groups looking to make games for both
business and pleasure. Join them. In fact, they would be lucky to have someone with as
much Unity experience as you have. Remember, you have four games under your belt
already. Working with others teaches you a lot about group dynamics. Furthermore,
working with others allows you to achieve higher levels of complexity in the games
you can make. Try to find artists and sound engineers to make your games full of rich
media goodness. You will find that working in teams is the best way to learn more
about your strengths and weaknesses. It can be a great reality check as well as a
confidence booster.

Write About It
Writing about your games and your game development endeavors can be great for
your personal progress. Whether you start a blog or keep a personal notebook, your
observations will serve you well in the present and in retrospect. Writing can also be a
great way to hone your skills and collaborate with others. By putting your ideas out
there, you can receive feedback and learn through the input of others.

Resources Available to You
Many resources are available to you to continue your education both on the Unity
game engine and in game development in general. First and foremost is the Unity
documentation, the official resource for all things Unity, which is available at
http://docs.unity3d.com. It is important to know that this document takes a technical
approach to Unity coverage. Don’t think of it as a learning tool but rather as a manual.
Unity also provides a great assortment of online training on its Learn site, at
http://unity3d.com/learn. There, you will find many videos, projects, and other
resources to help you improve your skills.
If you find that you have a question that you cannot answer with the help of these two
resources, try the very helpful Unity community. At the Unity Answers site, at http://
answers.unity3d.com, you can ask specific questions and get direct answers from
Unity pros.
Aside from the official Unity resources, several game development sites are available

to you. Two of the most popular ones are http://www.gamasutra.com and
http://www.gamedev.net. Both of these sites have large communities and regularly
publish articles. Their subject matter is not limited to Unity, so they can provide a
large and unbiased source of information.

Summary
In this hour, you’ve reviewed everything you have done with Unity so far. You’ve also
looked forward. You started by examining all the things you have accomplished over
the course of this book. Then you looked at some of the things you can do from here to
continue improving your skills. Finally, you looked at some of the free resources
available to you on the Internet.

Q&A
Q. After reading this hour’s materials, I can’t help but feel that you think I

should make games. Is that true?
A. Yes. I believe I mentioned it a few times. I cannot stress enough how important

it is to continue to hone your skills through practice and creativity.

Workshop
Take some time to work through the questions here to ensure that you have a firm
grasp of the material.

Quiz
1. Can Unity be used to make both 2D and 3D games?
2. Should you be proud of the things you have accomplished so far?
3. What is the single best thing you can do to continue increasing your skills in

game development?
4. Have you learned everything you need to learn about Unity?

Answers
1. Absolutely!
2. Absolutely again!
3. Keep making games and sharing them with people.
4. No. You should never stop learning!

Exercise
The theme of this final hour is retrospect and solidifying the things you have learned.

The final exercise for this book continues that theme. It is common in the game
industry to write something called a post-mortem. The idea behind a post-mortem is
that you write an article about a game you have made with the intention of other
people reading it. In a post-mortem, you analyze the things that worked in your
process and the things that didn’t. You aim to inform others of the pitfalls that you
discovered so that they won’t fall into the same ones.
In this exercise, write a post-mortem about one of the games you made in this book.
You don’t necessarily have to have anyone read it. It is the process of doing the
writing that is important. Be sure to spend some time on this because you might want
to read it again further down the road. You will be amazed at the things you found
difficult and at the things you found enjoyable.
After writing the post-mortem, print it out (unless you wrote it by hand) and put it in
this book. Later, when you come across this book again, be sure to open the post-
mortem and read it.

Index

Symbols
+ (addition) operator, 126
&& (AND) operator, 128
*= (assignment) operator, 127
/= (assignment) operator, 127
+= (assignment) operator, 127
–= (assignment) operator, 127
= (assignment) operator, 127
, (comma) key, 224
{ } (curly brackets), 121, 131
– (decrement) operator, 127
/ (division) operator, 126
== (equality) operator, 127
> (greater than) operator, 127
≥ (greater than or equal to) operator, 127
++ (increment) operator, 127
< (less than) operator, 127
≤ (less than or equal to) operator, 127
% (modulus) operator, 126
* (multiplication) operator, 126
!= (not equal) operator, 127
! (NOT) operator, 128
|| (OR) operator, 128
. (period) key, 224
– (subtraction) operator, 126
“2 audio listeners” message, 73

2D animations
assets, 293–295
creating, 295–297
series of animations, 295–297
slicing sprite sheets for, 293–295

2D audio, 367, 372
2D Extras package, 219
2D games, 23–24, 197

2D Extras package, 219
2D Scene view, 198–200
2D Tilemapper, 213

colliders, 209, 225–228
grids, 216
palettes, 216–218
tilemaps, 213–215, 228–229
tiles, 219–224

animations
assets, 293–295
creating, 295–297
series of animations, 295–297
slicing sprite sheets for, 293–295

audio, 367, 372
basics of, 197–198
blurred line between 2D and 3D, 40
Captain Blaster, 251

background, 254–255
bullets, 258, 267–268, 269
camera, 253
concept, 251–252
game manager, 261–262
improvements to, 268–269
meteors, 257–258, 262–264
player (spaceship), 255–257, 265–267, 269
requirements, 252
rules, 252
triggers, 259, 264–265
UI (user interface), 259–260
world, 252–253

challenges of, 198
deployment of, 210
orthographic cameras, 200–201

physics, 208
colliders, 208–210
rigidbody, 208

sorting layers
creating, 205
defined, 200
Order in Layer setting, 207–208

sprites, 39
animations, 204
collisions, 209
creating, 199–200
importing, 202
placing, 199–200
sizes of, 205
sorting layers, 205–208
Sprite Editor, 203–204
sprite modes, 203–204
sprite sheets, 203

2D Object menu, Tilemap command, 214
2D physics, 208

colliders, 208–210
rigidbody, 208

2D Scene view, 198–200
2D Tilemapper, 213

colliders
Composite Collider 2D, 209, 227–228
tilemap, 225–227

grids, 216
palettes

customizing, 224–225
Tile Palette window, 216–218, 222

tilemaps
angled, 216
creating, 214–215
defined, 213
tilemap colliders, 225–227
when to use, 228–229

tiles
creating, 219–221
custom, 219
painting, 221–224

sprite configuration, 219
2D/3D view (Scene view), 13
3D artists, 293
3D audio, 367, 371–372
3D engines, 24
3D games. See games
3D models. See models
.3ds files, 41
4 Split command (Layouts menu), 7

A
acceleration variable, 386
accelerometers

axis mismatch, 386
defined, 385
designing for, 386
reading input from, 386–387

AccelerometerScript, 387
access modifier, 124
Account controls, 16
activation tracks, 336
Add Asset Package button, 6
Add Component button, 11
Add Component menu

Audio command, 367
Physics 2D command, 208, 209, 227
Playables command, 333
Scripts command, 110, 358

Add Layer command (Layer menu), 91
Add Sorting Layer command (Sorting Layer menu), 206
Add Texture command (Edit Textures menu), 63
Add Tree command (Edit Trees menu), 67
Add Tree dialog, 67
addition (+) operator, 126
AddScore() method, 261
AdjustTime() method, 357
Adventure game, 346
.aif file format, 366

.aiff file format, 366
Albedo property (shaders), 48
Allow Dynamic Resolution property (camera), 87
Allow HDR property (camera), 87
Allow MSAA property (camera), 87
Alt Negative Button/Alt Positive Button property (axis), 144
Amazing Racer game, 99, 411

character controller, 105–106
concept, 100
controls, 107–109
environment effects, 103
fog, 103–104
gameification, 106
requirements, 101–102
rules, 100–101
scripts

connecting, 110–111
importing and attaching, 109–110

skyboxes, 104–105
terrain, 102–103

anchor button, 236–237
anchors, 234–237
Anchors property (Inspector), 236
AND (&&) operator, 128
Android. See mobile development
angled tilemaps, 216
Angular Drag property (rigidbody component), 156
Animation property (Texture Sheet module), 284
Animation window, 297–299
AnimationControl script, 328
animations. See also Ethan model animation

2D
assets, 293–295
creating, 295–297
series of animations, 295–297
slicing sprite sheets for, 293–295

3D artists, 293
Animation window, 297–299
animators, 307–308

animation preparation, 313–319
Animator controllers, 331–332

Animator view, 321–322
asset configuration, 310–311
blend trees, 324–326
creating, 319–321
Idle animation, 313–315, 322–323
models, importing, 309–310
parameters, 323–324
rig preparation, 311–313
scripting, 327–329
states, 324–326
transitions, 326–327
WalkForwardStraight animation, 315–317
WalkForwardTurnRight animation, 317–319

applying to models, 305
blending, 305
creating, 295–297, 299–301
Curves Editor, 303–305
defined, 291
fast animations, 340
Gauntlet Runner game, 352–354
interpolation, 303
key frames, 329
ObjectSpinAnim, 299–300, 302–303
Record mode, 299, 301–303
rigs, 291–292, 309, 311–313
sprites, 204
Timelines, 298, 301, 331

assets, 332
clips, 331–332, 338–342
compared to Animator controller, 331–332
compared to playables, 344
creating, 333–334
number of, 344
Playable Director, 332, 333
power of, 331
scripting with, 342–343
Timelines window, 335
tracks, 332, 336–337

Animator command (Window menu), 321
Animator Controller command (Create menu), 319
Animator controllers, 331–332

Animator view, 321–322
animators, 307–308

animation preparation, 313
Animator controllers, 331–332
Animator view, 321–322
asset configuration, 310–311
blend trees, 324–326
creating, 319–321
Idle animation, 313–315, 322–323
models, importing, 309–310
parameters, 323–324
rig preparation, 311–313
scripting, 327–329
states, 324–326
transitions, 326–327
WalkForwardStraight animation, 315–317
WalkForwardTurnRight animation, 317–319

arcade-style game. See Chaos Ball game
area lights, 82
arena (Chaos Ball game), 168–169

creating, 169
SuperBouncy material, 171–172
textures, 170
walls, 172

arithmetic operators, 125–126
Aspect drop-down menu (Game view), 15
Asset Store

downloading assets from, 43–44
selling assets in, 51

assets
2D animations, 293–295
compared to game objects, 20
configuring, 310–311
defined, 8
downloading, 43–44
materials

applying, 49–50
defined, 46–47
physics materials, 159–160
UI elements, 240

model asset workflow, 45

moving, 8
prefabs

adding to scenes, 189–190
characteristics of, 183–184
compared to classes, 193
creating, 186–189
defined, 183, 184
inheritance, 184, 191–192
instances of, 184, 193
instantiation of, 184, 189–190, 193
Lamp, 194–195
structure of, 184–186

selling, 51
shaders

applying, 49–50
built-in shaders, 51
defined, 46
properties of, 48–49

terrain assets, importing, 61
textures

applying, 49–50
defined, 45–46
terrain, 61–66

Timelines, 332
unwraps, 45–46

Assets folder, 8
Assets menu, Import Package command, 61, 105, 169, 206, 225, 289, 309
assignment operators, 126–127
asterisk (*), 126
asynchronous scene loading, 396
attaching scripts, 109–110, 111, 119–120
attributes, 358
audio. See also Timelines

2D, 367, 372
3D, 367, 371–372
audio listeners

“2 audio listeners” message, 73
defined, 365–366
multiple, 87

channels, 378
clips, 366

changing, 375
importing, 368–369

importance of, 365
mixers, 375

creating, 375–376
sending audio to, 376–377

muting, 369
priorities, 368
rolloff, 367
sound board exercise, 379–380
sources, 366
starting, 373–375
stopping, 373–375
supported file types, 366
testing, 370–371

Audio Clip property (Audio Source component), 367, 375
Audio command (Add Component menu), 367
audio listeners

“2 audio listeners” message, 73
defined, 365–366
multiple, 87

Audio Mixer command
Create menu, 375
Window menu, 375

audio tracks, 336
AudioClip variable, 375
AudioScript, 374, 379–380
audioSource variable, 373
Audition mode (Scene view), 13
Auto Random Seed property (Particle System module), 276
Axis property (axis), 144
axis system, 24

axis mismatch, 386
axis of rotation, 31–32
axis properties, 143–144

B
background (Captain Blaster game), 254–255

Background property (camera), 86
Background sorting layer, 215
Background tilemap, 214
Bake into Pose setting (animation), 314
Bake Light Probes For setting (terrains), 71
baking objects, 78
balls (Chaos Ball game)

chaos balls, 173–175
colored balls, 175–176

Base Map Dist. setting (terrains), 71
base terrain settings, 70–71
Bending setting (terrains), 72
Best Fit property (Text component), 240
Billboard Start setting (terrains), 72
billboards, 68, 271
blend trees, 324–326
blending

animations, 305
clips, 340–342

blocks, 124, 139
bones, 291
bool variable type, 123
Bounce Combine property (physics materials), 160
Bounce property (Collision module), 281
Bounciness property (physics materials), 160
Box Collider 2D, 208, 259
braces ({ }), 121, 131
Break Prefab Instance command (GameObject menu), 192
breaking prefab links, 192
brick texture, 49–50, 51–52
Brush Size property (Paint Trees tool), 67
bugs, 111
Build Settings command (File menu), 249, 394
Build Settings dialog, 394, 403–404
building games, 402

build settings, 403–404
defined, 394
game settings, 404–405

built-in game objects, 27, 36, 40–41
built-in methods, 122
built-in shaders, 51

Bullet script, 267–268, 269
bullets (Captain Blaster game)

Bullet script, 267–268
creating, 258
delayed firing of, 269

BumpedBrick material, 52
BumpedSpecularBrick material, 52
Bursts property (Emission module), 276
Button command (UI menu), 241, 243, 249
Button component

creating, 242–244
properties of, 241–242

buttons, anchor, 236–237
Bypass Effects property (Audio Source component), 367
Bypass Listener Effects property (Audio Source component), 367
Bypass Reverb Zones property (Audio Source component), 368

C
C# Script command (Create menu), 109, 116–118
C# scripts. See scripts
calling methods, 141–142, 356–357
Camera command

GameObject menu, 85
Rendering menu, 85

CameraFollow.cs script, 229
cameras, 17, 86

Captain Blaster game, 253
ignoring, 95
multiple, 87–88
orthographic, 86, 95, 200–201
perspective, 86, 95
picture-in-picture, 89–90
properties, 86–87
split-screen, 88–89

canvas
adding, 232–233
anchors, 234–237
Canvas component, 237

Canvas Scaler component, 237
defined, 231
Graphical Raycaster component, 237
Rect transform, 233–234
render modes

mixing in single scene, 248
Screen Space-Camera, 246
Screen Space-Overlay, 245–246
selecting, 245
switching between, 247–248
World Space, 246–247

Canvas command (UI menu), 232
Canvas component, 237
Canvas Scaler component, 237
Capsule Collider 2D, 209
Captain Blaster game, 251, 411

background, 254–255
bullets

Bullet script, 267–268
creating, 258
delayed firing of, 269

camera, 253
concept, 251–252
game manager, 261–262
improvements to, 268–269
meteors

creating, 257–258
MeteorMover script, 262–263
MeteorSpawn script, 263–264

player (spaceship)
creating, 255–257
polygon collider, 269
ShipControl script, 265–267

requirements, 252
rules, 252
triggers

creating, 259
DestroyOnTrigger script, 264–265

UI (user interface), 259–260
world, 252–253

Cast Shadows property (Renderer module), 71, 286

Center property (colliders), 158
channels (audio), 378
Chaos Ball game, 167, 411

arena, 168–169
creating, 169
SuperBouncy material, 171–172
texturing, 170
walls, 172

chaos balls, 173–175
colored balls, 175–176
concept, 168
Continuous Dynamic collision detection, 174, 175, 180
game manager, 178–179
goals, 176–178
GoalScript, 177
improvements to, 179–180
player, 172–173
requirements, 168
rules, 168
VelocityScript, 174–175

char variable type, 123
character controllers

adding to scenes, 72–73
Amazing Racer game, 105–106

CharacterRobotBoy, 211
Characters command (Import Package menu), 72, 105, 309
Circle Collider 2D, 208, 257
Clamp() method, 358
class contents (scripts), 121–122
class declaration section (scripts), 121
classes

compared to prefabs, 193
SceneManager, 395
in scripts, 121–122

Clear Flags property (camera), 86
On Click() property (Button component), 241–242
CliffAlbedoSpecular texture, 65
Clipping Planes property (camera), 86
clips, 331–332

adding, 338
blending, 340–342

changing, 375
importing, 368–369
sequencing, 339

collaborative groups, 412
Collect Detail Patches setting (terrains), 71
Collidable command (Scripts menu), 358
Collidable script (Gauntlet Runner), 358–359
Collider Force and Multiple Options property (Collision module), 282
colliders, 208–210

adding, 157, 158–159
Captain Blaster game, 257, 269
combining, 158
Composite Collider 2D, 209, 227–228
defined, 157
mesh, 159
properties of, 158
tilemap, 225–227

Collides With property (Collision module), 282
collision detection, 156, 174, 175, 180, 227
Collision Detection property (rigidbody component), 156, 227
Collision Mode property (Collision module), 282
Collision module, 281–283
Collision Quality property (Collision module), 282
collisions, 155. See also particle systems

colliders, 208–210
adding, 157, 158–159
combining, 158
Composite Collider 2D, 209, 227–228
defined, 157
mesh colliders, 159
properties of, 158

collision detection, 156, 174, 175, 180, 227
Collision module, 281–283
Gauntlet Runner game, 358–359
Layer Collision Matrix, 94
physics materials, 159–160
raycasting, 163–164
rigidbody component, 155–156, 165
triggers

adding, 161–162
methods, 160–161

troubleshooting, 162
Color by Speed module, 279
Color over Lifetime module, 278–279
Color property

Color by Speed module, 279
Image component, 238
point lights, 79

colored balls (Chaos Ball game), 175–176
comma (,) key, 224
comments, 121
compartments (for loop), 133
Component menu, Physics command, 155, 156
components, accessing, 148

GetComponent() method, 148
transform component, 148–149

Composite Collider 2D, 209, 227–228
Composite tool, 34
concept

Amazing Racer game, 100
Captain Blaster game, 251–252
Chaos Ball game, 168
Gauntlet Runner game, 345

conditionals, 128
if statement, 129
if/else if statement, 130–131
if/else statement, 130

conditions, 101
Console window, 122
consolidating objects, 169
Constraints property (rigidbody component), 156
Continuous Dynamic collision detection, 175, 180, 227
control tracks, 336
controls

Amazing Racer game, 107–109
Captain Blaster game

Bullet, 267–268
DestroyOnTrigger, 264–265
GameManager, 261–262
MeteorMover, 262–263
MeteorSpawn, 263–264
ShipControl, 265–267

Chaos Ball game
game manager, 178–179
goals, 176–178

Gauntlet Runner game
Collidable script, 358–359
GameManager script, 354–357
linking with objects, 360–361
Player script, 357–358
Spawner script, 359–360
TextureScroller, 349
TriggerZone script, 354

particle systems, 273
Cookie property (point lights), 79
cookies, 84–85
coordinate systems, 23

axes, 24
coordinate syntax, 25
defined, 24
local coordinates, 26
origin, 25
points in, 24
world coordinates, 26

Create Empty command (GameObject menu), 27, 107, 176
Create menu

Animator Controller command, 319
Audio Mixer command, 375
C# Script command, 109, 116–118
Folder command, 42
Material command, 47, 49, 104, 170
Physics Material 2D command, 159
Physics Material command, 159
Prefab command, 186
Sprites command, 199
Timeline command, 333

Create New Animation dialog, 256
Create New Palette dropdown, 217
Create New Project dialog, 4
Create Other command (GameObject menu), 81
Create Other menu, Spotlight command, 81
Create State menu, From New Blend Tree command, 324
cross-platform settings, 400–401

CubeControlScript, 154
cubemaps, 105
cubes, 27
Culling Mask property, 93–94

cameras, 86
point lights, 79

curly braces({ }), 121, 131
current frame (Animation window), 298
Curves Editor, 286–288, 303–305
Custom Data module, 285
custom palettes, 224–225
custom particles, 272
custom tiles, 219
Custom Vertex Stream property (Renderer module), 286
Cycles property (Texture Sheet module), 284

D
.dae files, 41
Dampen property

Collision module, 281
Limit Velocity over Lifetime module, 278

Damping property (Noise module), 281
dark scenes, troubleshooting, 398
Dark Sky material, 347
data persistence, 398–400
Dead property (axis), 144
decrement (-) operator, 127
Default Layout command (Layouts menu), 6–7
Default Playables Library, 336
Default-Particle setting, 350
Delta Time property (Particle System module), 276
deltaPosition property (Touch variable), 388
deltaTime property (Touch variable), 388
Density property (fog), 104
deploying games

2D games, 210
data persistence, 398–400
defined, 394

object persistence, 396–398
Player settings, 400

cross-platform settings, 400–401
per-platform settings, 401–402

scene management, 393–394
scene order, 394–395
switching between scenes, 395–396

depth, 2D colliders and, 210
Depth property (camera), 86
Descriptive Name/Descriptive Negative Name property (axis), 144
design

for accelerometers, 386
Amazing Racer game

concept, 100
requirements, 101–102
rules, 100–101

Captain Blaster game
background, 254–255
camera, 253
concept, 251–252
requirements, 252
rules, 252
world, 252–253

Chaos Ball game
concept, 168
requirements, 168
rules, 168

Gauntlet Runner game
concept, 345
requirements, 346
rules, 346

UIs (user interfaces), 231
DestroyOnTrigger script, 264–265
Detail Density setting (terrains), 71
Detail Distance setting (terrains), 71
Device command (Unity Remote menu), 384
DiffuseBrick material, 52
dimension systems, 23–24
Directional Light command (Light menu), 81
directional lights, 81–82
division (/) operator, 126

documentation (Unity), 412
DontDestroyOnLoad() method, 396–398
Doppler Level property (3D audio), 372
double variable type, 123
downloading

models, 43–44
Unity, 2–4

Drag property
Limit Velocity over Lifetime module, 278
rigidbody component, 156

Draw Halo property (point lights), 79
Draw mode (Scene view), 13
draw order, 205–208
Draw setting (terrains), 71
Duboc, Andy, 346
duplicating views, 7
Duration property (Particle System module), 275
.dxf files, 41
Dynamic Friction property (physics materials), 160

E
Edge Collider 2D, 208
Edit Collider property (colliders), 158
Edit Layers command (Layer menu), 91
Edit menu

New Scene command, 43
Preferences command, 5
Project Settings command, 384

Edit Terrain Texture dialog, 63–64
Edit Textures menu, Add Texture command, 63
Edit Trees menu, Add Tree command, 67
editor. See Unity editor
Editor command (Project Settings menu), 384
Effects command (GameObjects menu), 271
Effects menu, Particle System command, 271–272
elements (UI), 237–238

buttons
creating, 242–244

properties of, 241–242
images, 238–239
materials, 240
presets, 245
sorting, 245
text, 240

Emission module, 276–277
emissive materials, 82
Emitter Velocity property (Particle System module), 276
Enable Unity Analytics option, 6
Enabled Dynamic Colliders property (Collision module), 282
End property (fog), 104
entities. See game objects
environment, mobile development, 382–383, 384–385
Environment command (Import Package menu), 61
environments. See also worlds

Amazing Racer game
environment effects, 103
fog, 103–104
terrain, 102–103

terrain
adding to projects, 53–55
assets, importing, 61
billboards, 68
character controllers, 72–73
defined, 53
gaining proficiency with, 74
grass, 68–70
heightmap sculpting, 55–57
settings, 70–72
size of, 55
TerrainData errors, 66
terrain-sculpting tools, 58–60
textures, 61–66
trees, 66–67, 71–72
when to use, 74

equal sign (=), 127
equality operators, 127–128
Erase tool (Tile Palette window), 222
Escape key, 112
Ethan model animation

Animator view, 321–322
asset configuration, 310–311
blend trees, 324–326
Foot IK setting, 323
Idle animation, 313–315, 322–323
importing model, 309–310
parameters, 323–324
prefab, 330
rig preparation, 311–313
scripting, 327–329
states, 324–326
transitions, 326–327
WalkForwardStraight animation, 315–317
WalkForwardTurnRight animation, 317–319

Export Raw command (heightmaps), 57
exporting heightmaps, 57
External Forces module, 280

F
Fade Length setting (terrains), 72
fast animations, 340
.fbx files, 41
Field of View property (camera), 86
file formats

audio, 366
models, 41

File menu
Build Settings command, 249, 394, 403
New Project command, 4, 5
New Scene command, 395
Save command, 118
Save Scene As command, 395
Save Scene command, 249

files, .meta, 347
Fill tool (Tile Palette window), 222
Find() method, 150–151
finding game objects, 150–152
FindWithTag() method, 152

fingerId property (Touch variable), 388
Finish Zone object (Amazing Racer), 108
Flare property (point lights), 79
flat games. See 2D games
Flip U/Flip V properties (Texture Sheet module), 284
float variable type, 123
Flythrough mode, 18–19
fog (Amazing Racer game), 103–104
Fog Color property (fog), 104
Fog Mode property (fog), 104
Folder command (Create menu), 42
folders

Assets, 8
Models, 42
Scenes, 11
Scripts, 110

Foot IK setting, 323
Force over Lifetime module, 278
Foreground sorting layer, 215
forward slash (/), 126
FPSController, 72–73, 172–173
Frame Select, 18
Frequency property (Noise module), 280
Friction Combine property (physics materials), 160
functions. See methods

G
Gamasutra.com, 413
game development websites, 413
game managers

Captain Blaster game, 261–262
Chaos Ball game, 178–179
defined, 101
Gauntlet Runner game, 354–357

game objects, 23. See also animations; sprites
Amazing Racer game

controls, 107–109
fog, 103–104

http://Gamasutra.com

game control objects, 107–109
skyboxes, 104–105
terrain, 102–103

built-in game objects, 27, 36, 40–41
cameras, 86

ignoring, 95
multiple, 87–88
orthographic, 86, 95
perspective, 86, 95
picture-in-picture, 89–90
properties, 86–87
split-screen, 88–89

Captain Blaster game
bullets, 258, 267–268, 269
meteors, 257–258, 262–264
player (spaceship), 255–257, 265–267, 269
triggers, 259, 264–265

Chaos Ball game
chaos balls, 173–175
colored balls, 175–176
player, 172–173

compared to assets, 20
consolidating, 169
coordinate systems, 23

axes, 24
coordinate syntax, 25
defined, 24
local coordinates, 26
origin, 25
points in, 24
world coordinates, 26

creating, 27
defined, 8
dimension systems, 23–24
finding, 150–152
Gauntlet Runner game

game manager, 354–357
gauntlet, 347–348
linking with scripts, 360–361
obstacles, 351
players, 352–354, 357–358, 362

power-ups, 349–351
scrolling effect, 348–349
Spawner script, 359–360
trigger zone, 352, 354

Grid, 216
Input, 386
layers

adding, 91–92
cautions, 91
defined, 90
Layer Collision Matrix, 94
when to use, 92–95

lights, 77
adding, 82
area lights, 82
baking, 78
cookies, 84–85
dark scenes, 398
defined, 78
directional lights, 81–82
halos, 83–84
ignoring, 95
lightmapping, 95
point lights, 78–80
properties, 77
real time, 78
spotlights, 80–81

modifying components of, 152–153
nesting, 10, 35–36, 41
persisting, 396–398
PlayerPrefs, 398–400
prefabs

adding to scenes, 189–190
breaking prefab links, 192
characteristics of, 183–184
compared to classes, 193
creating, 186–189
defined, 183, 184
inheritance, 184, 191–192
instances of, 184, 193
instantiation of, 184, 189–190, 193

Lamp, 188–189, 190, 191–192, 194–195
structure of, 184–186

properties, changing, 12
Spawn Point, 194
Sphere object, 191–192
transformations, 28–29

gizmo placement, 34–35
hazards of, 33–34
nested objects and, 35–36
rotation, 31–32
scaling, 32–33
translation, 29–30

triangles in, 39–40
game overlay, 13
Game Settings dialog, 404–405
Game view, 14–16
Gamedev.net, 413
gameification, 106
GameManager script

Captain Blaster game, 261–262
Gauntlet Runner game, 354–357

GameObject menu, 27
3D Object command, 53–54
Break Prefab Instance command, 192
Camera command, 85
Create Empty command, 27, 107, 176
Create Other command, 81
Cube command, 27
Effects command, 271
Light command, 79, 81
UI command, 232, 235

gamepads, 153
games. See also 2D games; game objects

3D engines for, 24
Adventure, 346
Amazing Racer, 99, 411

character controller, 105–106
concept, 100
controls, 107–109
environment effects, 103
fog, 103–104

http://Gamedev.net

gameification, 106
playtesting, 111–112
requirements, 101–102
rules, 100–101
scripts, 109–111
skyboxes, 104–105
terrain, 102–103

building, 402
build settings, 403–404
defined, 394
game settings, 404–405

Captain Blaster, 251, 411
background, 254–255
bullets, 258, 267–268, 269
camera, 253
concept, 251–252
game manager, 261–262
improvements to, 268–269
meteors, 257–258, 262–264
player (spaceship), 255–257, 265–267, 269
requirements, 252
rules, 252
triggers, 259, 264–265
UI (user interface), 259–260
world, 252–253

Chaos Ball, 167, 411
arena, 168–172
chaos balls, 173–175
colored balls, 175–176
concept, 168
Continuous Dynamic collision detection, 174, 175, 180
game manager, 178–179
goals, 176–178
GoalScript, 177
improvements to, 179–180
player, 172–173
requirements, 168
rules, 168
VelocityScript, 174–175

deploying
2D games, 210

data persistence, 398–400
defined, 394
object persistence, 396–398, 400
Player settings, 400–402
scene management, 393–396

dimension systems, 23–24, 40
gaining experience with, 412
Gauntlet Runner, 345, 411

Collidable script, 358–359
concept, 345
game manager, 354–357
gauntlet, 347–348
improvements to, 361
linking scripts and objects in, 360–361
obstacles, 351
players, 352–354, 357–358, 362
power-ups, 349–351
requirements, 346
rules, 346
scene setup, 347
scrolling effect, 348–349
Spawner script, 359–360
TextureScroller script, 349
trigger zone, 352, 354

meshes, 39
process of permission in, 100
writing about, 412

gauntlet (Gauntlet Runner), 347–348
Gauntlet Runner game, 345, 411

Collidable script, 358–359
concept, 345
game manager, 354–357
gauntlet, 347–348
improvements to, 361
linking scripts and objects in, 360–361
obstacles, 351
players, 352–354

phasing out, 361, 362
Player script, 357–358

power-ups, 349–351
requirements, 346

rules, 346
scene setup, 347
scrolling effect, 348–349
Spawner script, 359–360
TextureScroller script, 349
trigger zone

creating, 352
TriggerZone script, 354

GetAxis() method, 144
GetComponent() method, 148
GetKey() method, 145–146
GetKeyDown() method, 146
GetKeyUp() method, 146
GetMouseButtonDown() method, 147
gizmo selector (Scene view), 13
gizmos

defined, 13
placement, 34–35
scene gizmo, 13–14
translation gizmos, 28

Gizmos button (Game view), 15
goals (Chaos Ball game), 176–178
GoalScript, 177
Graphical Raycaster component, 237
grass

Grass Tiles palette
creating, 218
painting, 223

Grass Tint setting, 72
GrassFrond01AlbedoAlpha texture, 68
GrassHillAlbedo texture, 63–64
GrassRockyAlbedo texture, 64
painting, 68–70

Grass Tiles palette
creating, 218
painting, 223

Grass Tint setting (terrains), 72
GrassFrond01AlbedoAlpha texture, 68
GrassHillAlbedo texture, 63–64
GrassRockyAlbedo texture, 64
Gravity Modifier property (Particle System module), 275

Gravity property (axis), 144
grayscale images, 55
greater than (>) operator, 127
greater than or equal to (≥) operator, 127
green lights in animation settings, 315
Grid object, 216
grids, 34, 216
Ground material (Gauntlet Runner), 348
ground scrolling, 348–349
groups, collaborative, 412

H
halos, 83–84
Hand tool, 17
heightmap sculpting, 55–57
HelloWorldScript, 120

attaching, 119–120
class contents, 121–122
class declaration section, 121
comments, 121
creating, 116–118
using section, 121

Hexagon sprite, 199–200
Hierarchy view, 10–11
Horizontal Overflow property (Text component), 240
humanoid animations

Ethan model
Animator view, 321–322
asset configuration, 310–311
blend trees, 324–326
Foot IK setting, 323
Idle animation, 313–315, 322–323
importing model, 309–310
parameters, 323–324
prefab, 330
rig preparation, 311–313
scripting, 327–329
states, 324–326

transitions, 326–327
WalkForwardStraight animation, 315–317
WalkForwardTurnRight animation, 317–319

Gauntlet Runner game, 352–354

I
IDEs (integrated development environments), 119
Idle animation, 313–315, 322–323
if statement, 129
if/else if statement, 130–131
if/else statement, 130
ignoring lights/cameras, 95
Image command (UI menu), 235, 238, 239
Image Type property (Image component), 238
images, 238–239. See also sprites

grayscale, 55
heightmaps, 55–57
splash images, 402

Import Package command (Assets menu), 44, 61, 105, 169, 206, 225, 289, 309
Import Package dialog, 72
Import Package menu

Characters command, 72, 105, 309
Environment command, 61
ParticleSystems command, 289

Import Raw command (heightmaps), 56
Import Raw Heightmap dialog, 56–57
Import Unity Package dialog, 61
importing

audio clips, 368–369
heightmaps, 56–57
models, 41–42, 309–310
particle systems, 289
scripts, 109–110, 111
sprites, 202
terrain assets, 61

increment (++) operator, 127
Indirect Multiplier property (point lights), 79
Inherit Velocity module, 278

inheritance in prefabs, 184, 191–192
input, 143

axis properties, 143–144
Input Manager, 143
Input object, 386
mouse input, 147
scripting, 144–145
specific key input, 145–146

Input command (Project Settings menu), 143
Input Manager, 143
Input object, 386
InputScript, 391
Inspector view, 11–12
installing Unity, 1–4
instances, prefab, 184, 193
Instantiate() method, 193
instantiation of prefabs, 184, 189–190, 193
int variable type, 123
integrated development environments (IDEs), 119
Intensity property (point lights), 79
Interpolate property (rigidbody component), 156
interpolation, 303
Invert property (axis), 144
Invoke() method, 356–357
invoking methods, 141–142, 356–357
iOS. See mobile development
Is Kinematic property (rigidbody component), 156
Is Trigger property (colliders), 158
isGameOver flag, 356
isPlaying variable, 373
.it file format, 366
iteration

defined, 132
for loops, 133
while loop, 132

J
JavaScript, 116

joints, 291
Joy Num property (axis), 144
Jungle Tiles palette

creating, 218
painting, 223

K
key codes, 145–146
key frames (animation), 298, 329
key input, 145–146

L
Lamp prefab

creating, 188–189
modifying, 191–192
multiple instances of, 190
PrefabGenerator script, 194–195

landscape orientation, 385
Layer Collision Matrix, 94
Layer menu

Add Layer command, 91
Edit Layers command, 91

layers, 207–208
adding, 91–92
Background/Foreground, 215
cautions, 91
creating, 205
defined, 90, 200
Layer Collision Matrix, 94
when to use, 92–95

Layers drop-down menu (toolbar), 16
Layout drop-down menu (toolbar), 16
layouts

default, 6–7
saving, 6–7

Layouts menu

4 Split command, 7
Default Layout command, 6–7
Save Layout command, 6–7

Learn button (Project dialog), 19
Learn website, 412
legacy UI (user interface), 232, 356
less than (<) operator, 127
less than or equal to (≤) operator, 127
levels. See scenes
license options (Unity), 1
Lifetime Loss property (Collision module), 281
Light and Reflection Probes property (Renderer module), 286
Light command

GameObject menu, 79, 81
Rendering menu, 82, 177

Light menu
Directional Light command, 81
Point Light command, 27, 79

Lighting command (Window menu), 83
lightmapping, 95
lights, 77

adding to objects, 82
area, 82
baking, 78
cookies, 84–85
dark scenes, 398
defined, 78
directional, 81–82
emissive materials, 82
halos, 83–84
ignoring, 95
lightmapping, 95
Lights module, 284–285
point, 78–80
properties, 77
real time, 78
spotlights, 80–81

Lights module, 284–285
Limited Velocity over Lifetime module, 277–278
links, breaking, 192
Load Previous Project on Startup option, 5

LoadScene() method, 395
local components, accessing, 148

GetComponent() method, 148
transform component, 148–149

local coordinates, 26
localScale variable, 147
locking Timeline window, 335
locking tracks, 340
logical operators, 128
Loop property (Audio Source component), 368
Loop Time setting (animation), 314
looping

defined, 132
for loops, 133
while loop, 132

Looping property (Particle System module), 275

M
managing scenes, 393–394

scene order, 394–395
switching between scenes, 395–396

maps. See scenes
Masking property (Renderer module), 286
Mass property (rigidbody component), 156
Material command (Create menu), 47, 49, 104, 170
Material property

colliders, 158
Image component, 238
Renderer module, 285
terrains, 71

materials. See also games
applying, 49–50
colliders, 158
defined, 46–47
Image component, 238
physics materials, 159–160
Renderer module, 285
terrains, 71

UI elements, 240
Mathf.Clamp() method, 358
Mation Vectors property (Renderer module), 286
Max Collision Shapes property (Collision module), 282
Max Distance property (3D audio), 372
Max Kill Speed property (Collision module), 282
Max Mesh Trees setting (terrains), 72
Max Particle Size property (Renderer module), 286
Max Particles property (Particle System module), 276
Maximize on Play button (Game view), 15
Mecanim animation system. See animations
menu system, building, 249–250
meshes. See also models

compared to models, 40
defined, 39
mesh colliders, 159
previewing, 310
scaling, 42–43

.meta files, 347
Metallic property (shaders), 48
MeteorMover script, 262–263
meteors (Captain Blaster)

creating, 257–258
MeteorMover script, 262–263
MeteorSpawn script, 263–264

MeteorSpawn script, 263–264
methods

AddScore(), 261
AdjustTime(), 357
anatomy of

general format, 138
method block, 139
method name, 138
method signature, 139
parameter list, 138–139
return type, 138

built-in methods, 122
calling, 141–142, 356–357
Clamp(), 358
defined, 137
DontDestroyOnLoad(), 396–398

factory analogy, 140
Find(), 150–151
FindWithTag(), 152
GetAxis(), 144
GetComponent(), 148
GetKey(), 145–146
GetKeyDown(), 146
GetKeyUp(), 146
GetMouseButtonDown(), 147
Instantiate(), 193
Invoke(), 356–357
LoadScene(), 395
number of, 153
OnCollisionEnter2D(), 268
OnGUI(), 357, 389–390
OnTriggerEnter(), 160–161, 177, 354
OnTriggerEnter2D(), 266, 268
OnTriggerExit(), 160
OnTriggerStay(), 160
overloading, 139
Play(), 333
PlayDelayed(), 373
PlayerDied(), 261
Raycast(), 163–164
Rotate(), 147
shorthand for, 138
SlowWorldDown(), 356–357
Spawn(), 264
SpeedWorldUp(), 356–357
Start(), 121, 137

Bullet script, 267–268
MeteorMover script, 262–263
MeteorSpawn script, 264

Stop(), 333
TakeDamageFromFireball(), 140–141, 142
Translate(), 147
troubleshooting, 142
Update(), 121, 137

AccelerometerScript, 387
Gauntlet Runner game, 356, 358, 360
InputScript, 391

ShipControl script, 265–266
writing, 140–141

Min Distance property (3D audio), 372
Min Kill Speed property (Collision module), 282
Min Particle Size property (Renderer module), 286
Minimum Vertex Distance property (Trails module), 285
mixers (audio), 375

creating, 375–376
sending audio to, 376–377

mixing canvas render modes, 248
mobile development, 381

accelerometers
axis mismatch, 386
defined, 385
designing for, 386
reading input from, 386–387

environment setup, 382–383, 384–385
iOS versus Android, 390
mobile device types, 382
multi-touch input, 387–390
preparing for, 381–382
requirements for, 381
Unity Remote, 383–384

mobile devices, 382. See also mobile development
.mod file format, 366
Mode property

point lights, 79
Texture Sheet module, 284

model asset workflow, 45
models, 39–40. See also meshes

assets
applying, 49–50
materials, 46–47
model asset workflow, 45
selling, 51
shaders, 46, 51
textures, 45–46
unwraps, 45–46

compared to meshes, 40
downloading from Asset Store, 43–44
importing, 41–42, 309–310

rigs, 291–293
Models folder, 42
modes (sprite), 203–204, 205
modules (particle system), 273–275

Collision, 281–283
Color by Speed, 279
Color over Lifetime, 278–279
Custom Data, 285
default module, 275–276
Emission, 276–277
External Forces, 280
Force over Lifetime, 278
Inherit Velocity, 278
Lights, 284–285
Limited Velocity over Lifetime, 277–278
Noise, 280–281
Renderer, 285–286
Rotation by Speed, 280
Rotation over Lifetime, 280
Shape, 277
Size by Speed, 280
Size over Lifetime, 279
Sub Emitter, 284
Texture Sheet, 284
Trails, 285
Triggers, 284
Velocity over Lifetime, 277

modulus (%) operator, 126
MonoDevelop, 119
MotionScript, 166
mouse cursor, unlocking, 112
mouse input, 147
Move tool (Tile Palette window), 222
MovementScript, 161–162
moving

assets, 8
views, 6–7

.mp3 file format, 366
multiple audio listeners, 87
Multiple by Size property (Limit Velocity over Lifetime module), 278
multiple cameras, 87–88

multiplication (*) operator, 126
Multiply by Velocity property (Limit Velocity over Lifetime module), 278
multi-touch input, 387–390
Mute Audio button (Game view), 15, 369
Mute property (Audio Source component), 367
muting

audio, 369
tracks, 340

N
naming conventions

methods, 138
scripts, 118

Navigation property (Button component), 241
Negative Button property (axis), 144
nested objects, 10, 35–36, 41
From New Blend Tree command (Create State menu), 324
New Project command (File menu), 4, 5
New Scene command (File menu), 43, 395
Noise module, 280–281
Normal Direction property (Renderer module), 285
Normal Map property (shaders), 48
NOT (!) operator, 128
not equal (!=) operator, 127

O
.obj files, 41
object-oriented programming (OOP), 193
objects. See assets; game objects
ObjectSpinAnim animation, 299–300, 302–303
obstacles (Gauntlet Runner), 351
Occlusion Culling property (camera), 87
Octave Multiplier property (Noise module), 281
Octave Scale property (Noise module), 281
Octaves property (Noise module), 281
off games, 16

Offset property (shaders), 48
Offset setting (animation), 314
.ogg file format, 366
OnCollisionEnter2D() method, 268
OnGUI() method, 357, 389–390
online resources, 412–413
OnTriggerEnter() method, 160–161, 177, 354
OnTriggerEnter2D() method, 266, 268
OnTriggerExit() method, 160
OnTriggerStay() method, 160
OOP (object-oriented programming), 193
Open Project dialog, 4
operating systems, Unity support for, 3
operators

arithmetic, 125–126
assignment, 126–127
defined, 125
equality, 127–128
logical, 128

OR (||) operator, 128
Order in Layer property (Renderer module), 286
order of scenes, 394–395
organizing

projects, 9
scenes, 11

orientation
landscape, 385
portrait, 385

origin (coordinate systems), 25
orthographic cameras, 86, 95, 200–201
Output property (Audio Source component), 367
overloading methods, 139

P
Paint Height tool, 59
Paint tool (Tile Palette window), 222
Paint Trees tool, 66–67
painting

grass, 68–70
tiles, 221–224
trees, 66–67

palettes
customizing, 224–225
Tile Palette window, 216–218, 222

parameters
animators, 323–324
methods, 138–139

parent/child relationships, 10
particle effects, 271, 273
Particle System command (Effects menu), 271–272
Particle System module, 275–276
particle systems

billboards, 271
controls, 273
creating, 271–272
Curves Editor, 286–288
defined, 271
efficiency of, 289
Gauntlet Runner game, 350
importing, 289
modules, 273–275

Collision, 281–283
Color by Speed, 279
Color over Lifetime, 278–279
Custom Data, 285
default module, 275–276
Emission, 276–277
External Forces, 280
Force over Lifetime, 278
Inherit Velocity, 278
Lights, 284–285
Limited Velocity over Lifetime, 277–278
Noise, 280–281
Renderer, 285–286
Rotation by Speed, 280
Rotation over Lifetime, 280
Shape, 277
Size by Speed, 280
Size over Lifetime, 279

Sub Emitter, 284
Texture Sheet, 284
Trails, 285
Triggers, 284
Velocity over Lifetime, 277

particle effects, 271, 273
particles

custom, 272
defined, 271

particles
custom, 272
defined, 271

ParticleSystems command (Import Package menu), 289
Pause button (Game view), 15
paused games, 16
percent sign (%), 126
period (.) key, 224
permission, process of, 100
per-platform settings, 401–402
persistence

data, 398–400
game objects, 396–398

perspective cameras, 86, 95
phase property (Touch variable), 388
PhasedOut material, 361
Physics 2D command (Add Component menu), 208, 209, 227
Physics 2D menu

Polygon Collider 2D command, 209
Rigidbody 2D command, 209

Physics command (Project Settings), 171
Physics Manager, 171
Physics Material 2D command (Create menu), 159
Physics Material command (Create menu), 159
physics materials, 159–160
Physics menu, Rigidbody command, 155, 156
Physics2D menu

Box Collider 2D command, 259
Circle Collider 2D command, 257
Polygon Collider command, 257
Rigidbody2D command, 257, 258

Picker tool (Tile Palette window), 222

picture-in-picture effect, 89–90
Pitch property (Audio Source component), 368
Pivot property (Renderer module), 286
Pixel Error setting setting (terrains), 71
Plane command (3D menu), 169
Planes and World property (Collision module), 281
Planes mode (Collision module), 282
Planes property (Collision module), 282
Platforms tilemap, 215
PlatformWhiteSprite, 211
Play button (Game view), 15
Play() method, 333
Play On Awake property (Audio Source component), 368
Play on Wake property (Particle System module), 276
Playable Director, 332, 333
playable tracks, 336
PlayableDirector variable, 333
playables, 344. See also Timelines

Default Playables Library, 336
defined, 336

Playables command (Add Component menu), 333
PlayDelayed() method, 373
player input. See input
Player script (Gauntlet Runner game), 357–358
Player settings, 400

cross-platform settings, 400–401
per-platform settings, 401–402

PlayerDied() method, 261
PlayerPrefs object, 398–400
players, 402

Captain Blaster game
creating, 255–257
polygon collider, 269
ShipControl script, 265–267

Chaos Ball game, 172–173
Gauntlet Runner game

creating, 352–354
phasing out, 361, 362
Player script, 357–358

playtesting, 101
Amazing Racer game, 111–112

audio, 370–371
mobile environment setup, 384–385

plus sign (+), 126
Point Light command (Light menu), 27, 79
point lights, 78–80
points (coordinate system), 24
Polygon Collider 2D, 209
Polygon Collider command (Physics2D menu), 257
portrait orientation, 385
Position property

Noise module, 281
Touch variable, 388

Positive Button property (axis), 144
post-mortems, 414
power-ups (Gauntlet Runner), 349–351
Prefab command (Create menu), 186
PrefabGenerator script, 194–195
prefabs

adding to scenes, 189–190
characteristics of, 183–184
compared to classes, 193
creating, 186–189
defined, 183, 184
Ethan model animation, 330
inheritance, 184, 191–192
instances of, 184, 193
instantiation of, 184, 189–190, 193
Lamp

creating, 188–189
modifying, 191–192
multiple instances of, 190
PrefabGenerator script, 194–195

links, breaking, 192
structure of, 184–186

Preserve Aspect property (Image component), 238
presets, 245
previewing

animations, 299
meshes, 310
Timeline, 335

Prewarm property (Particle System module), 275

priorities (audio), 368
Priority property (Audio Source component), 368
private variables, 124–125
procedural skyboxes, 104–105
process of permission, 100
Project dialog, 19
Project Settings menu

Editor command, 384
Input command, 143
Physics command, 171
Tags & Layers command, 151, 174, 207

Project view, 8–9
Projection property (camera), 86
projects

creating, 5
organizing, 9

properties
3D audio, 372
animations, 298
axis properties, 143–144
Button component, 241–242
changing, 12
colliders, 158
Image component, 238
lights, 77
particle system modules

Collision module, 281–283
Color by Speed module, 279
Emission module, 276–277
Inherit Velocity module, 278
Limited Velocity over Lifetime module, 277–278
Noise module, 280–281
Particle System module, 275–276
Renderer module, 285–286
Shape module, 277
Texture Sheet module, 284
Velocity over Lifetime module, 277

physics materials, 160
point lights, 79
rigidbody component, 156
shader properties, 48–49

Text component, 240
Touch variable, 388

public variables, 124–125

Q
Q hotkey, 17
QE keys, 18
Quality property (Noise module), 281

R
r hotkey, 32
Radius Scale property (Collision module), 282
Raise/Lower tool, 58–59
Randomize Rotation property (Particle System module), 275
Range property (point lights), 79
Rate over Distance property (Emission module), 276
Rate over Time property (Emission module), 276
Raycast() method, 163–164
Raycast Target property (Image component), 238
RaycastHit variable, 163
raycasting, 163–164
RaycastScript, 164
rays, 163–164
reading accelerometer input, 386–387
real time lighting, 78
realism in terrains, 69
Receive Shadows property (Renderer module), 286
Record mode (animations), 299, 301–303
Rect tool, 29, 200, 222
Rect transform, 29, 233–234
red lights in animation settings, 315
Reflection Probes setting (terrains), 71
Remap property (Noise module), 281
Remove Component button, 11
Render Alignment property (Renderer module), 286
Render Mode property

point lights, 79
Renderer module, 285

render modes (canvas)
mixing in single scene, 248
Screen Space-Camera, 246
Screen Space-Overlay, 245–246
selecting, 245
switching between, 247–248
World Space, 246–247

Renderer module, 285–286
Rendering menu

Camera command, 85
Light command, 82, 177

Rendering Path property (camera), 86
requirement

Amazing Racer game, 101–102
Captain Blaster game, 252
Chaos Ball game, 168
Gauntlet Runner game, 346

resolution of terrain, 54–55
resources, 412–413
return type, 138
Reverb Zone Mix property (Audio Source component), 368
Rich Text property (Text component), 240
rigidbody 2D, 155–156, 208, 209, 257, 258
Rigidbody command (Physics menu), 155
rigidbody component, 156, 165
rigs, 291–292, 309, 311–313
Robot Kyle model, 43–44
RobotBoyRunSprite asset, 296
rolloff, 367
Root Transform setting (animation), 314
Rotate() method, 147
Rotate tool, 31
rotation, 31–32

Rotate() method, 147
Rotate tool, 31
Rotation by Speed module, 280
Rotation over Lifetime module, 280
Rotation property (Noise module), 281

Rotation by Speed module, 280

Rotation over Lifetime module, 280
Rotation property (Noise module), 281
rules

Amazing Racer game, 100–101
Captain Blaster game, 252
Chaos Ball game, 168
Gauntlet Runner game, 346

running games, 16

S
.s3m file format, 366
samples (animation), 298
SandAlbedo texture, 65
Save command (File menu), 118
Save Layout command (Layouts menu), 6–7
Save Scene As command (File menu), 395
Save Scene command (File menu), 249
Scale Plane property (Collision module), 282
scaling

game objects, 32–33
meshes, 42–43

Scaling Mode property (Particle System module), 276
Scaling tool, 32
scene gizmo, 13–14
Scene view, 12–14

audio testing in, 370–371
Flythrough mode, 18–19
Hand tool controls, 17

SceneManager class, 395
scenes

cameras, 86
ignoring, 95
multiple, 87–88
orthographic, 86, 95
perspective, 86, 95
picture-in-picture, 89–90
properties, 86–87
split-screen, 88–89

creating, 43
defined, 11, 393
Gauntlet Runner game, 347
layers

adding, 91–92
cautions, 91
defined, 90
Layer Collision Matrix, 94
when to use, 92–95

lights, 13, 77
adding to objects, 82
area, 82
baking, 78
cookies, 84–85
dark scenes, 398
defined, 78
directional, 81–82
emissive materials, 82
halos, 83–84
ignoring, 95
lightmapping, 95
point, 78–80
properties, 77
real time, 78
spotlights, 80–81

organizing, 11
prefabs, adding, 189–190
scene gizmo, 13–14
scene order, 394–395
switching between, 395–396
zooming, 17

Scenes folder, 11
scope of variables, 123–124
Screen Space-Camera mode (canvas), 246
Screen Space-Overlay mode (canvas), 245–246
scripts

AccelerometerScript, 387
Amazing Racer game

connecting together, 110–111
importing and attaching, 109–110, 111

anatomy of, 120

class contents, 121–122
class declaration section, 121
comments, 121
using section, 121

AnimationControl, 328
animators, 327–329
attaching, 119–120
audio, 372
AudioScript, 374, 379–380
CameraFollow.cs, 229
Captain Blaster game

Bullet, 267–268
DestroyOnTrigger, 264–265
GameManager, 261–262
MeteorMover, 262–263
MeteorSpawn, 263–264
ShipControl, 265–267

Chaos Ball game
GoalScript, 177
VelocityScript, 174–175

conditionals, 128
if statement, 129
if/else if statement, 130–131
if/else statement, 130

creating, 116–119
CubeControlScript, 154
defined, 106–107, 115
Gauntlet Runner game

Collidable, 358–359
GameManager, 354–357
linking with objects, 360–361
Player, 357–358
Spawner, 359–360
TextureScroller, 349
TriggerZone, 354

HelloWorldScript, 120
attaching, 119–120
class contents, 121–122
class declaration section, 121
creating, 116–118
using section, 121

importance of, 113
input, 143

axis properties, 143–144
Input Manager, 143
mouse input, 147
scripting, 144–145
specific key input, 145–146

InputScript, 391
iteration

defined, 132
for loops, 133
while loop, 132

local components, accessing, 148
GetComponent() method, 148
transform component, 148–149

methods. See also individual method names
anatomy of, 138–140
calling, 141–142
defined, 137
factory analogy, 140
number of, 153
overloading, 139
shorthand for, 138
troubleshooting, 142
writing, 140–141

MotionScript, 166
MovementScript, 161–162
naming conventions, 118
operators

arithmetic, 125–126
assignment, 126–127
defined, 125
equality, 127–128
logical, 128

PrefabGenerator, 194–195
RaycastScript, 164
saving, 118
TargetCubeScript, 152–153
Timelines, 342–343
TouchScript, 389
TriggerScript, 161–162

variables
C# variable types, 123
creating, 123
defined, 123
private, 124–125
public, 124–125
scope, 123–124

Scripts command (Add Component menu), 110, 358
Scripts folder, 110
Scroll Speed property (Noise module), 281
ScrollBackground script, 254
scrolling effect (Gauntlet Runner), 348–349
scubber (Animation window), 298
Select tool (Tile Palette window), 222
selling assets, 51
Send Collision Messages property (Collision module), 282
Sensitivity property (axis), 144
Separate Axes property (Noise module), 280
Separate Axis property (Limit Velocity over Lifetime module), 278
sequencing clips, 339
serializing

data, 398–400
game objects, 396–398

Services controls, 16
Set Native Size property (Image component), 238
settings

build, 403–404
game, 404–405
input, 143
lighting, 83, 398
Player, 400

cross-platform settings, 400–401
per-platform settings, 401–402

terrain
base terrain settings, 70–71
tree and detail object settings, 71–72
wind settings, 72

shaders
applying, 49–50
built-in shaders, 51
defined, 46

properties of, 48–49
Shadow Type property (point lights), 79
Shape module, 277
ShipControl script, 265–267
shooter game. See Captain Blaster game
shredders (Captain Blaster)

creating, 259
DestroyOnTrigger script, 264–265

signature (method), 139
Simulation Space property (Particle System module), 275
Simulation Speed property (Particle System module), 276
size

of colliders, 158
of orthographic cameras, 201
of sprites, 205
of terrain, 55

Size Amount property (Noise module), 281
Size by Speed module, 280
Size over Lifetime module, 279
Size property

colliders, 158
terrain, 72

skyboxes (Amazing Racer game), 104–105
Slice menu, 204
slicing sprite sheets, 294–295
Slope Limit property (Character Controller), 105
SlowWorldDown() method, 356–357
Smooth Height tool, 59–60
Smoothness property (shaders), 48
snap controls, 18
Snap property (axis), 144
Sort Mode property (Renderer module), 285
Sorting Fudge property (Renderer module), 286
Sorting Layer menu, Add Sorting Layer command, 206
Sorting Layer property (Renderer module), 286
sorting layers, 207–208

adding, 91–92
Background, 215
cautions, 91
creating, 205
defined, 90, 200

Foreground, 215
Layer Collision Matrix, 94
Order in Layer setting, 207–208
when to use, 92–95

sorting UI elements, 245
sound. See audio
sound board exercise, 379–380
Source Image property (Image component), 238
sources, audio, 366
Space property (Velocity over Lifetime module), 277
spaceship (Captain Blaster)

creating, 255–257
polygon collider, 269
ShipControl script, 265–267

Spatial Blend property (Audio Source component), 368
Spawn() function, 264
Spawn Point object, 194
spawn points, 101, 194
Spawner script (Gauntlet Runner), 359–360
spawning, defined, 101
SpecularBrick material, 52
Speed Modifier property (Velocity over Lifetime module), 277
Speed property (Limit Velocity over Lifetime module), 278
Speed Range property (Color by Speed module), 279
Speed setting (terrains), 72
SpeedWorldUp() method, 356–357
Sphere object, 191–192
spinning object animation, 299–300, 302–303
splash images, 402
split-screen cameras, 88–89
Spotight command (Light menu), 81
spotlights, 80–81
Spread property (3D audio), 372
Sprite Editor, 203–204
sprite sheets, 203, 294–295
sprites, 39. See also animations; game objects

Captain Blaster game
bullets, 258, 267–268, 269
meteors, 257–258, 262–264
player (spaceship), 255–257, 265–267, 269
triggers, 259, 264–265

collisions, 209
creating, 199–200
importing, 202
placing, 199–200
sorting layers

Background/Foreground, 215
creating, 205
defined, 200
Order in Layer setting, 207–208

Sprite Editor, 203–204
sprite modes, 203–204, 205
sprite sheets, 203, 294–295
tiles, 219

Sprites command (Create menu), 199
Start Color property (Particle System module), 275
Start Delay property (Particle System module), 275
Start Lifetime property (Particle System module), 275
Start() method, 121, 137

Bullet script, 267–268
MeteorMover script, 262–263
MeteorSpawn script, 264

Start property (fog), 104
Start Rotation property (Particle System module), 275
Start Size property (Particle System module), 275
Start Speed property (Particle System module), 275
starting audio, 373–375
statements. See also iteration

if, 129
if/else, 130
if/else if, 130–131

states, animators, 324–326
Static Friction property (physics materials), 160
Stats button (Game view), 15
Step button (Game view), 15
Stereo Pan property (Audio Source component), 368
Stop Action property (Particle System module), 276
Stop() method, 333
stopping audio, 373–375
Strength property (Noise module), 280
string variable type, 123
Sub Emitter module, 284

subtraction (-) operator, 126
SuperBouncy material, 171–172
switching between scenes, 395–396
syntax, 123
system requirements for Unity, 3

T
Tag Manager, 151
Tags & Layers command (Project Settings menu), 151, 174, 207
TakeDamageFromFireball() method, 140–141, 142
tapCount property (Touch variable), 388
Target Texture property (camera), 86
TargetCubeScript, 152–153
terrain. See also environments; worlds

adding to projects, 53–55
Amazing Racer game, 102–103
assets, importing, 61
billboards, 68
character controllers, 72–73
defined, 53
gaining proficiency with, 74
grass, 68–70

Grass Tiles palette, 218, 223
Grass Tint setting, 72
GrassFrond01AlbedoAlpha texture, 68
GrassHillAlbedo texture, 63–64
GrassRockyAlbedo texture, 64
painting, 68–70

heightmap sculpting, 55–57
settings

base terrain settings, 70–71
tree and detail object settings, 71–72
wind settings, 72

size of, 55
TerrainData errors, 66
terrain-sculpting tools, 58–60
textures, 61–66
trees

painting, 66–67
settings, 71–72

when to use, 74
Terrain command (3D Object menu), 53–54
Terrain Settings button, 54
TerrainData errors, 66
testing, 101

Amazing Racer game, 111–112
audio, 370–371
mobile environment setup, 384–385

Text command (UI menu), 240, 249
Text component, 240
Text property (Text component), 240
Texture Sheet module, 284
textures

applying, 49–50
defined, 45–46
terrain, 61–66

TextureScroller script, 349
texturing Chaos Ball arena, 170
Thickness setting (terrains), 71
three-dimensional games. See 3D games
Tile Palette command (Window menu), 216–218
Tile Palette window, 216–218, 222
Tilemap Collider 2D command (Tilemap menu), 226
tilemap colliders, 225–227
Tilemap command (2D Object menu), 214
tilemaps

angled, 216
creating, 214–215
defined, 213
tilemap colliders, 225–227
when to use, 228–229

tiles
creating, 219–221
custom tiles, 219
painting, 221–224
sprite configuration, 219

Tiles property (Texture Sheet module), 284
Tiling property (shaders), 48
Timeline command

Create menu, 333
Window menu, 335

Timelines, 298, 301, 331
assets, 332
clips, 331–332

adding, 338
blending, 340–342
sequencing, 339

compared to Animator controller, 331–332
compared to playables, 344
creating, 333–334
number of, 344
Playable Director, 332, 333
power of, 331
scripting with, 342–343
Timelines window, 335
tracks, 336–337

adding, 337
defined, 332
locking, 340
muting, 340
types of, 336

timing animations, 301
toolbar, 16
Torus.fbx file, 42
totalTimeElapsed variable, 356
touch input, 387–390
Touch variable, 387–390
TouchScript, 389
track groups, 336
tracking touches, 389
tracks, 336–337

adding, 337
defined, 332
locking, 340
muting, 340
types of, 336

Trail Material property (Renderer module), 285
Trails module, 285
transform component, 28, 148–149
transform gizmo toggles, 16

transform tools, 16
transformations, 28–29

gizmo placement, 34–35
hazards of, 33–34
nested objects and, 35–36
Rect transform, 233–234
rotation, 31–32
scaling, 32–33
transform component, 28, 148–149
transform gizmo toggles, 16
translation, 29–30

Transition property (Button component), 241
transitions, 326–327
Translate() method, 147
Translate tool, 28
translation, 28, 29–30
Tree Density property (Paint Trees tool), 67
Tree Distance setting (terrains), 71
Tree Height property (Paint Trees tool), 67
trees

painting, 66–67
settings, 71–72

triangles, 3D objects and, 39–40
trigger zone (Gauntlet Runner)

creating, 352
TriggerZone script, 354

triggers
adding to scenes, 161–162
Captain Blaster game

creating, 259
DestroyOnTrigger script, 264–265

methods, 160–161
Triggers module, 284

Triggers module, 284
TriggerScript, 161–162
TriggerZone script, 354
Tristem, Ben, 254
troubleshooting. See also testing

“2 audio listeners” message, 73
collisions, 162
dark scenes, 398

methods, 142
particle systems, 350
TerrainData errors, 66

Type property (axis), 144

U
UI command (GameObject menu), 232
UI menu

Button command, 241, 243, 249
Canvas command, 232
Image command, 238, 239
Text command, 240, 249

UIs (user interfaces)
basic principles of, 231–232
canvas

adding, 232–233
anchors, 234–237
Canvas component, 237
Canvas Scaler component, 237
defined, 231
Graphical Raycaster component, 237
render modes, 245–248

Captain Blaster game, 259–260
defined, 231
design, 231
elements, 237–238

buttons, 241–245
images, 238–239
materials, 240
presets, 245
sorting, 245
text, 240

importance of, 248
legacy system, 232, 356
menu system, building, 249–250
Rect transform, 233–234

units (coordinate systems), 25
Unity Answers website, 413

Unity documentation, 412
Unity downloads, 2–4
Unity editor, 4

Project dialog, 4–6
toolbar, 16
views

defined, 6
duplicating, 7
Flythrough mode, 18–19
Game, 14–16
Hierarchy, 10–11
Inspector, 11–12
moving, 6–7
Project, 8–9
Scene, 12–14, 16–19

Unity Hub, 2
Unity installation, 1–4
Unity licenses, 1
Unity player, 402
Unity Remote, 383–384
Unity Remote menu, Device command, 384
Unity system requirements, 3
unlocking mouse cursor, 112
unwraps, 45–46
Update() method, 121, 137

AccelerometerScript, 387
Gauntlet Runner game, 356, 358, 360
InputScript, 391
ShipControl script, 265–266

user interfaces. See UIs (user interfaces)
using section (scripts), 121

V
variables

acceleration, 386
AudioClip, 375
audioSource, 373
C# variable types, 123

creating, 123
defined, 123
isPlaying, 373
localScale, 147
PlayableDirector, 333
private, 124–125
public, 124–125
RaycastHit, 163
scope, 123–124
totalTimeElapsed, 356
Touch, 387–390

Velocity over Lifetime module, 277
VelocityScript, 174–175
Vertical Overflow property (Text component), 240
View Port Rect property (camera), 86
views

2D Scene view, 198–200
defined, 6
duplicating, 7
Game, 14–16
Hierarchy, 10–11
Inspector, 11–12
moving, 6–7
Project, 8–9
Scene, 12–14

audio testing in, 370–371
Flythrough mode, 18–19
Hand tool controls, 17

Visual Studio, 119
Visualization property (Collision module), 282
Visualize Bounds property (Collision module), 282
Volume property (Audio Source component), 368
Volume Rolloff property (3D audio), 372

W
W hotkey, 29
WalkForwardStraight animation, 315–317
WalkForwardTurnRight animation, 317–319

walls
Chaos Ball arena, 172
Gauntlet Runner game, 348

WASD keys, 18
Wasilev, Krasi, 255
Water Hazard Detector (Amazing Racer), 107
.wav file format, 366
wind settings (terrain), 72
Window menu

Animator command, 321
Audio Mixer command, 375
Console command, 122
Lighting command, 83
Tile Palette command, 216–218
Timeline command, 335

world coordinates, 26
World mode (Collision module), 282
World Space mode (canvas), 246–247
worlds

Amazing Racer game
environment effects, 103
fog, 103–104
skyboxes, 104–105
terrain, 102–103

Captain Blaster game, 252–253
Chaos Ball arena, 168–172
Gauntlet Runner game

gauntlet, 347–348
ground scrolling, 348–349
scene setup, 347

writing
about games, 412
methods, 140–141

X
x axis, 24
.xm file format, 366
XYZ property (Velocity over Lifetime module), 277

Y
y axis, 24
y hotkey, 34

Z
z axis, 24
zooming in/out, 17

Code Snippets

Table of Contents

Title Page 3
Copyright Page 4
Contents at a Glance 7
Table of Contents 8
About This E-Book 2
Preface 15
About the Author 16
Dedication 17
Acknowledgments 18
We Want to Hear from You! 19
Reader Services 20
HOUR 1: Introduction to Unity 23

Installing Unity 23
Getting to Know the Unity Editor 27
Navigating the Unity Scene View 40
Summary 43
QA 43
Workshop 43
Exercise 44

HOUR 2: Game Objects 45
Dimensions and Coordinate Systems 45
Game Objects 49
Transforms 50
Summary 58
QA 58
Workshop 59
Exercise 59

HOUR 3: Models, Materials, and Textures 61
The Basics of Models 61
Textures, Shaders, and Materials 67
Summary 73
QA 73
Workshop 74

Exercise 74
HOUR 4: Terrain and Environments 76

Terrain Generation 76
Terrain Textures 85
Generating Trees and Grass 90
Character Controllers 98
Summary 99
QA 100
Workshop 100
Exercise 100

HOUR 5: Lights and Cameras 102
Lights 102
Cameras 111
Layers 116
Summary 121
QA 121
Workshop 121
Exercise 122

HOUR 6: Game 1: Amazing Racer 124
Design 124
Creating the Game World 127
Gamification 131
Playtesting 137
Summary 138
QA 138
Workshop 139
Exercise 139

HOUR 7: Scripting, Part 1 141
Scripts 142
Variables 149
Operators 152
Conditionals 155
Iteration 159
Summary 161
QA 161
Workshop 161
Exercise 162

HOUR 8: Scripting, Part 2 163
Methods 163
Input 169
Accessing Local Components 175
Accessing Other Objects 177
Summary 181
QA 181
Workshop 181
Exercise 182

HOUR 9: Collision 183
Rigidbodies 183
Enabling Collision 185
Triggers 189
Raycasting 192
Summary 194
QA 194
Workshop 194
Exercise 195

HOUR 10: Game 2: Chaos Ball 196
Design 196
The Arena 197
Game Entities 201
The Control Objects 206
Improving the Game 209
Summary 210
QA 210
Workshop 210
Exercise 211

HOUR 11: Prefabs 212
Prefab Basics 212
Working with Prefabs 215
Summary 223
Q&A 223
Workshop 224
Exercise 224

HOUR 12: 2D Game Tools 226
The Basics of 2D Games 226

Orthographic Cameras 229

Adding Sprites 230
Draw Order 234
2D Physics 237
Summary 239
Q&A 239
Workshop 240
Exercise 240

HOUR 13: 2D Tilemap 242
The Basics of Tilemaps 242
Palettes 245
Tiles 247
Tilemaps and Physics 254
Summary 257
Q&A 257
Workshop 257
Exercise 258

HOUR 14: User Interfaces 259
Basic UI Principles 259
The Canvas 260
UI Elements 266
Canvas Render Modes 272
Summary 275
Q&A 275
Workshop 275
Exercise 276

HOUR 15: Game 3: Captain Blaster 279
Design 279
The World 280
Controls 289
Improvements 297
Summary 298
Q&A 298
Workshop 298
Exercise 299

HOUR 16: Particle Systems 300

Particle Systems 300
Particle System Modules 302
The Curves Editor 316
Summary 318
Q&A 318
Workshop 319
Exercise 319

HOUR 17: Animations 320
Animation Basics 320
Animation Types 322
Animation Tools 326
Summary 333
Q&A 333
Workshop 334
Exercise 334

HOUR 18: Animators 335
Animator Basics 335
Configuring Your Assets 338
Creating an Animator 347
Scripting Animators 356
Summary 357
Q&A 358
Workshop 358
Exercise 358

HOUR 19: Timeline 360
Timeline Basics 360
Working with Timelines 363
Going Beyond Simple Control 369
Summary 373
Q&A 373
Workshop 373
Exercise 373

HOUR 20: Game 4: Gauntlet Runner 375
Design 375
The World 376
The Entities 379
The Controls 384

Room for Improvement 391
Summary 391
Q&A 392
Workshop 392
Exercise 392

HOUR 21: Audio 394
Audio Basics 394
Audio Sources 396
Audio Scripting 401
Audio Mixers 404
Summary 406
Q&A 407
Workshop 407
Exercise 407

HOUR 22: Mobile Development 410
Preparing for Mobile 410
Accelerometers 414
Summary 419
Q&A 419
Workshop 419
Exercise 420

HOUR 23: Polish and Deploy 422
Managing Scenes 422
Persisting Data and Objects 425
Unity Player Settings 429
Building Your Game 432
Summary 435
Q&A 436
Workshop 436
Exercise 436

HOUR 24: Wrap-up 438
Accomplishments 438
Your 19 Hours of Learning 438
Where to Go from Here 440
Resources Available to You 441
Summary 442
Q&A 442

Workshop 442
Exercise 442

Index 444

Code Snippets 509

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About This E-Book
	Preface
	About the Author
	Dedication
	Acknowledgments
	We Want to Hear from You!
	Reader Services
	HOUR 1: Introduction to Unity
	Installing Unity
	Getting to Know the Unity Editor
	Navigating the Unity Scene View
	Summary
	QA
	Workshop
	Exercise

	HOUR 2: Game Objects
	Dimensions and Coordinate Systems
	Game Objects
	Transforms
	Summary
	QA
	Workshop
	Exercise

	HOUR 3: Models, Materials, and Textures
	The Basics of Models
	Textures, Shaders, and Materials
	Summary
	QA
	Workshop
	Exercise

	HOUR 4: Terrain and Environments
	Terrain Generation
	Terrain Textures
	Generating Trees and Grass
	Character Controllers
	Summary
	QA
	Workshop
	Exercise

	HOUR 5: Lights and Cameras
	Lights
	Cameras
	Layers
	Summary
	QA
	Workshop
	Exercise

	HOUR 6: Game 1: Amazing Racer
	Design
	Creating the Game World
	Gamification
	Playtesting
	Summary
	QA
	Workshop
	Exercise

	HOUR 7: Scripting, Part 1
	Scripts
	Variables
	Operators
	Conditionals
	Iteration
	Summary
	QA
	Workshop
	Exercise

	HOUR 8: Scripting, Part 2
	Methods
	Input
	Accessing Local Components
	Accessing Other Objects
	Summary
	QA
	Workshop
	Exercise

	HOUR 9: Collision
	Rigidbodies
	Enabling Collision
	Triggers
	Raycasting
	Summary
	QA
	Workshop
	Exercise

	HOUR 10: Game 2: Chaos Ball
	Design
	The Arena
	Game Entities
	The Control Objects
	Improving the Game
	Summary
	QA
	Workshop
	Exercise

	HOUR 11: Prefabs
	Prefab Basics
	Working with Prefabs
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 12: 2D Game Tools
	The Basics of 2D Games
	Orthographic Cameras
	Adding Sprites
	Draw Order
	2D Physics
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 13: 2D Tilemap
	The Basics of Tilemaps
	Palettes
	Tiles
	Tilemaps and Physics
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 14: User Interfaces
	Basic UI Principles
	The Canvas
	UI Elements
	Canvas Render Modes
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 15: Game 3: Captain Blaster
	Design
	The World
	Controls
	Improvements
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 16: Particle Systems
	Particle Systems
	Particle System Modules
	The Curves Editor
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 17: Animations
	Animation Basics
	Animation Types
	Animation Tools
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 18: Animators
	Animator Basics
	Configuring Your Assets
	Creating an Animator
	Scripting Animators
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 19: Timeline
	Timeline Basics
	Working with Timelines
	Going Beyond Simple Control
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 20: Game 4: Gauntlet Runner
	Design
	The World
	The Entities
	The Controls
	Room for Improvement
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 21: Audio
	Audio Basics
	Audio Sources
	Audio Scripting
	Audio Mixers
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 22: Mobile Development
	Preparing for Mobile
	Accelerometers
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 23: Polish and Deploy
	Managing Scenes
	Persisting Data and Objects
	Unity Player Settings
	Building Your Game
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 24: Wrap-up
	Accomplishments
	Your 19 Hours of Learning
	Where to Go from Here
	Resources Available to You
	Summary
	Q&A
	Workshop
	Exercise

	Index
	Code Snippets

